• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Targeting inflammation to better understand dangerous blood clots

Bioengineer by Bioengineer
May 28, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

It’s the third deadliest cardiovascular diagnosis, but doctors are still often stumped to explain why 40% of patients experience unprovoked venous thromboembolism (VTE). And after a patient has dealt with these dangerous blood clots once, a second and subsequent events become much more likely.

New research from a team of University of Michigan scientists may help solve the mystery of how to detect and deal with higher-than-usual clot risk in patients’ veins. The study, done in mice and published in the Journal of Clinical Investigation, focuses on clots’ relationship to the body’s defense and repair system, which causes inflammation.

“We don’t yet understand the molecular triggers which drive the development of life-threatening clots in deep veins,” said Yogen Kanthi, M.D., the study’s senior author and a vascular cardiologist at U-M’s Frankel Cardiovascular Center. “Our work aimed to identify and block a previously unrecognized pathway linking inflammation and thrombosis.”

Kanthi, also an assistant professor of internal medicine at Michigan Medicine, says VTE is triggered by some combination of coagulation and inflammation. But current treatments come up short, he says, because they only focus on one side of the equation: anticoagulation. After VTE, patients are often prescribed blood thinners for life.

Kanthi’s lab is instead investigating inflammation’s role in the development of deep vein thrombosis. His team’s new study found an enzyme called CD39 diffused circulating “danger” signals and inflammatory cytokines in blood during thrombosis.

FDA-approved drugs already exist for other conditions that are affected by the same pathway, and in particular, the paradigmatic inflammatory cytokine molecule called interleukin-1 beta. In fact, when the researchers inhibited interleukin-1 signals in their study, they reduced the number and size of venous blood clots the animals formed, Kanthi said.

“Here, we focused on potential therapeutics at the intersection of inflammation and thrombosis,” Kanthi said. “We showed that blocking interleukin 1 beta, a ubiquitous inflammatory molecule, was a powerful means to stop clot formation.”

###

Earlier this year, Kanthi and colleagues published a paper in Arteriosclerosis, Thrombosis, and Vascular Biology that identified CD39 as important to the venous thromboinflammatory response.

For updates on this and other research out of the Kanthi Lab, follow Kanthi on Twitter @YogenKanthi.

Additional authors, all from the University of Michigan, include co-first authors Vinita Yadav and Liguo Chi, Raymond Zhao, Benjamin Tourdot, Srilakshmi Yalavarthi, Benjamin N. Jacobs, Alison Banka, Hui Liao, Sharon Koonse, Anuli C. Anyanwu, Scott Visovatti, Michael Holinstat, J. Michelle Kahlenberg, Jason S. Knight and David J. Pinsky.

Media Contact
Haley Otman
otmanh@med.umich.edu
http://dx.doi.org/10.1172/JCI124804

Tags: CardiologyMedicine/HealthStroke
Share12Tweet8Share2ShareShareShare2

Related Posts

Advances in Asthma Therapeutics Unveiled

September 19, 2025

Persistent Cough Reveals Mysterious Endobronchial Mass

September 19, 2025

2025 Ig Nobel Prize Awarded for Perfecting the Science of Pasta Sauce

September 19, 2025

Uncovering Cancer Disparities Among Racial Groups

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advances in Asthma Therapeutics Unveiled

Persistent Cough Reveals Mysterious Endobronchial Mass

Unlocking Lignocellulose Breakdown: Microbial Enzyme Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.