• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Targeting individual atoms

Bioengineer by Bioengineer
June 24, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ETH Zurich / Jan Rhensius, Kristian Cujia

Nuclear magnetic resonance spectroscopy – NMR spectroscopy for short – is one of the most important methods of physicochemical analysis. It can be used to precisely determine molecular structures and dynamics. The importance of this method is also evidenced by the recognition of ETH Zurich’s two latest Nobel laureates, Richard Ernst and Kurt Wüthrich, for their contributions to refining the method.

The technique is based on nuclear magnetic resonance, which takes advantage of the fact that certain atomic nuclei interact with a magnetic field. A key factor here is the nuclear spin, which can be compared with the spinning of a child’s top. Similar to a top that begins to wobble – experts call this precession – nuclear spins that are exposed to a magnetic field begin to precess. This generates an electromagnetic signal that can be measured using an induction coil.

Higher resolution

A team of researchers led by Christian Degen, Professor of Solid-State Physics at ETH Zurich, has developed a new approach, making it possible to directly track the precession of single nuclear spins. In comparison: conventional NMR measurements usually require at least 1012 to 1018 atomic nuclei in order to register a measurement signal.

In their project, the ETH researchers analysed the behaviour of carbon-13 atoms in diamonds. Rather than using conventional methods to measure the precession of the carbon nucleus, they used the spin of an adjacent electron in an N-V centre – an imperfection in the diamond’s crystal lattice – as a sensor. Kristian Cujia, a doctoral student in Degen’s group, summarises the principle thus: “We use a second quantum system to study the behaviour of the first quantum system. In this way, we created a very sensitive way of measurement.”

Potential for future applications

Quantum systems are hard to pin down, as any measurement will also influence the system being observed. Therefore, the researchers were unable to track the precession continuously; its movement would have been changed too drastically. To solve this problem, they developed a special measurement method to capture the spin of the carbon atom through a series of weak measurements in quick succession. As a result, they were able to keep the influence of their observation so small as to not influence the system measurably, leaving the original circular motion perceptible.

“Our method paves the way for remarkable advances in NMR technology,” Degen explains. “This potentially enables us to directly record the spectra of individual molecules and analyse structures at the atomic level.” As a first example, the physicists identified the three-dimensional position of the carbon nuclei in the diamond lattice with atomic resolution. The physicists see huge potential in this development. Such detailed NMR measurements could lead to completely new insights in many areas, as has already been the case with conventional NMR spectroscopy in recent decades.”

###

This work was carried out in the framework of the National Centre of Competence in Research Quantum Science and Technology (NCCR QSIT). [http://www.nccr-qsit.ethz.ch/]

Reference

Cujia KS, Boss JM, Herb K, Zopes J, Degen CL: Tracking the precession of single nuclear spins by weak measurements. Nature, 24 June 2019, doi: 10.1038/s41586-019-1334-9 [http://dx.doi.org]

Media Contact
Dr. Christian Degen
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41586-019-1334-9

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet7Share2ShareShareShare1

Related Posts

Breakthrough in Origin of Life: Chemists Reveal How RNA Could Have Begun Synthesizing Proteins on Early Earth

Breakthrough in Origin of Life: Chemists Reveal How RNA Could Have Begun Synthesizing Proteins on Early Earth

August 27, 2025
AI-Driven Materials Map Accelerates Breakthroughs in Materials Discovery

AI-Driven Materials Map Accelerates Breakthroughs in Materials Discovery

August 27, 2025

Liverpool’s Professor Matt Rosseinsky Honored with Royal Medal for Groundbreaking Materials Science Research

August 27, 2025

Innovative Material Design Enables Magnetic Tunability in Quasicrystal Approximants

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Eating Disorders in Bariatric Surgery Patients

Breakthrough Partial Heart Transplant Offers Hope for Congenital Heart Disease

Breakthrough in Origin of Life: Chemists Reveal How RNA Could Have Begun Synthesizing Proteins on Early Earth

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.