• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Taming the genome’s ‘jumping’ sequences

Bioengineer by Bioengineer
April 18, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The human genome is fascinating. Once predicted to contain about a hundred thousand protein-coding genes, it now seems that the number is closer to twenty thousand, and maybe less. And although our genome is made up of about three billion units – “base pairs” – many of them don’t seem to belong to specific genes, and for that reason they were delegated to the dustbin of genetics: they were literally called “junk DNA”.

But as it turned out, junk DNA is actually critical in coordinating and regulating the work of actual genes. For example, there are sequences of DNA that “jump” around the genome and influence gene expression. These jumping units are called “transposable elements” and their number is estimated at over 4.5 million in a single genome.

Transposable elements frequently contain sequences that are binding sites for transcription factors – proteins that regulate the rate of transcription of DNA to RNA, marking the first step of gene expression. By moving around the entire genome, transposable elements renew the pool of binding sites for transcription factors, becoming a “motor” of genome evolution.

But at the same time, transposable elements can also be very dangerous to the host; they are genotoxic, meaning that they can cause mutations that can incapacitate genes, leading to severe diseases and even death. The question is, how is the genotoxic potential of transposable elements kept in check without compromising their ability to regulate the genome?

Now, scientists from the lab of Didier Trono at EPFL have found that a family of proteins known as KZFP (for Krüppel-associated box-containing zinc finger proteins), act as “key facilitators” by domesticating regulatory sequences embedded in transposable elements themselves.

When the genome of the human embryo is activated shortly after the egg is fertilized by the sperm, transposable elements are among the first sequences to be expressed. The researchers found that KZFPs quickly “tame” these elements, minimizing their transcriptional impact during the earliest stages of early embryogenesis. This allows transposable elements to be subsequently used later in development and in adult tissues. In this way, KZFPs play a key role in defining how the human genome is regulated, by facilitating the incorporation of transposable element-based controlling sequences into transcriptional networks.

“Our results reveal how a family of proteins that was long considered an oddity of nature, turns foes into friends,” says Didier Trono. “They show that KZFPs do not just sentence transposable elements to perpetual silence, but domesticate their formidable regulatory potential for the benefit of our genome. But our findings also imply that anomalies in the completion of this process would fatally compromise the earliest phases of human embryonic development.”

###

Other contributors

Whitehead Institute for Biomedical Research

Reference

Julien Pontis, Evarist Planet, Sandra Offner, Priscilla Turelli, Julien Duc, Alexandre Coudray, Thorold W. Theunissen, Rudolf Jaenisch, Didier Trono. Hominid-specific transposable elements and KZFPs facilitate human embryonic genome activation and control transcription in naive human ESCs. Cell Stem Cell 18 April 2019. DOI: 10.1016/j.stem.2019.03.012

Media Contact
Nik Papageorgiou
[email protected]
http://dx.doi.org/10.1016/j.stem.2019.03.012

Tags: BioinformaticsBiologyBiotechnologyCell BiologyDevelopmental/Reproductive BiologyGenesGeneticsMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

How ‘Care Groups’ Boost Women’s Attendance at Prenatal Visits

How ‘Care Groups’ Boost Women’s Attendance at Prenatal Visits

July 31, 2025
blank

Health Risks and Genetics of Multidimensional Sleep

July 31, 2025

IL-33 Activates Basophil Inflammasome Triggering Eczema

July 31, 2025

Enhancing Human Memory, Movement, and Overall Quality of Life

July 31, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Safeguarding Your Heart: Essential Insights for Heart Health

Decoding the Mechanisms Behind Chemotherapy Resistance in Bladder Cancer

Sunlight Transforms the Chemical Breakdown of Discarded Face Masks

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.