• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, April 11, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Taking microelectronics to a new dimension

Bioengineer by Bioengineer
March 23, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Erik Hagen Waller, Julian Karst, and Georg von Freymann

Metallic microstructures are the key components in almost every current or emerging technology. For example, with the next wireless communication standard (6G) being established, the need for advanced components and especially antennas is unbroken. The drive to yet higher frequencies and deeper integration goes hand in hand with miniaturization and fabrication technologies with on-chip capability. Via direct laser writing – an additive manufacturing technology that offers sub-micron precision and feature sizes – highly sophisticated and integrated components come into reach. One big advantage of direct laser writing is that it is not limited to the fabrication of planar structures but enables almost arbitrary 3D microstructures. This dramatically increases the options available to component or device designers and offers vast potential for, e.g., antenna performance improvement: gain, efficiency and bandwidth are higher at lower feeding losses for 3D antennas compared to their planar counterparts. These advantages become even more pronounced the higher the frequency gets.

In a recent paper published in Light: Advanced Manufacturing, a team of scientists from the Fraunhofer ITWM, the Technische Universität Kaiserslautern and the Stuttgart University have developed a novel photosensitive material that enables direct fabrication of highly conductive microcomponents via direct laser writing.

“Not only are the resulting structures made of almost 100 % silver, but they also have above 95% material density. Furthermore, almost arbitrary structure geometries are possible while onchip compatibility is maintained with this approach.”, says Erik Waller, the lead scientist of the project.

The feasibility and strength of the approach was demonstrated by the fabrication of a polarizer based on an array of helical antennas working in the infrared spectral region.

“This material and technology are well suited for the fabrication of conductive three dimensional micrometer-sized components. Next, we want to show the integration of thus fabricated components on conventionally fabricated chips. We then indeed take microelectronics to another dimension.”, says Georg von Freymann, head of department at the Fraunhofer ITWM and professor at the Technische Universität Kaiserslauten.

###

Media Contact
Erik Hagen Waller
[email protected]

Related Journal Article

http://dx.doi.org/10.37188/lam.2021.008

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Better metric for thermoelectric materials means better design strategies

April 10, 2021
IMAGE

CO2 mitigation on Earth and magnesium civilization on Mars

April 9, 2021

Better solutions for making hydrogen may lie just at the surface

April 9, 2021

Learning what makes the nucleus tick

April 9, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    851 shares
    Share 340 Tweet 213
  • Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    59 shares
    Share 24 Tweet 15
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    55 shares
    Share 22 Tweet 14
  • A sturdier spike protein explains the faster spread of coronavirus variants

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

GeneticsCell BiologyBiologyPublic HealthMedicine/HealthcancerInfectious/Emerging DiseasesMaterialsTechnology/Engineering/Computer ScienceClimate ChangeChemistry/Physics/Materials SciencesEcology/Environment

Recent Posts

  • Men with low health literacy less likely to choose active surveillance for prostate cancer after tumor profiling
  • Level of chromosomal abnormality in lung cancer may predict immunotherapy response
  • Mutant KRAS and p53 cooperate to drive pancreatic cancer metastasis
  • Better metric for thermoelectric materials means better design strategies
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In