• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Take off for ESA-funded rehabilitation project at the University of Bath

Bioengineer by Bioengineer
January 7, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

University of Bath press release

Credit: None

A joint European Space Agency (ESA) – University of Bath project has been launched that aims to inform ESA’s operational experts who develop and implement exercise countermeasures for astronauts.

ESA has a long-term interest in human missions to the Moon, both to explore the surface itself and as an operational testbed for future planetary explorations to Mars and beyond.

To date, however, very little is known about the physiological and biomechanical effects of life in low gravity and whether Lunar (0.16G) and Martian (0.38G) gravity is sufficient to maintain the long-term integrity of important physiological systems, such as muscles, bones, cardiovascular system.

The ESA and University of Bath co-funded PhD, which will for the first time will use computer simulations as well as anti-gravity devices, aims to estimate the forces experienced internally by lower limbs when the body is subject to different gravity environments. Specifically, it will map the variation in external loads, muscle strength and the reduced gravity effect to see how these interact when it comes to different forms of human locomotion.

The work has wider potential and a terrestrial spin-in, too. This includes improving and refining rehabilitation programmes for those, for example, recovering after a sustained period of bed rest following surgery.

James Cowburn from the University’s Department for Health, whose PhD is funded by the programme explains: “I hope that through this PhD we can inform rehabilitation to a higher standard both for those who are recovering from a sustained period of bed rest and/or orthopaedic injuries. This is a particularly exciting project to be involved in, with the potential for really significant impact in the years to come.”

Dr Salo added: “Anti-gravity devices are used by endurance runners and people in rehabilitation after lower limb injuries. We need to understand better how much strain can be reduced by these devices and what rate the load can be increased during the rehabilitation.

“We hope that this is the first step towards a closer and long-term research relationship between ESA and the University of Bath on this area, which can be expanded to advise how the human body reacts to low gravity if and when astronauts go back on the moon.”

The project is part of a wider ESA Network / Partnering Initiative (NPI) which aims to foster closer interactions between the ESA and European universities, research institutes and industry for research on advanced technologies with potential space applications.

Future human spaceflight

University alumnus and Medical Project Team Lead within the Space Medicine Office of the European Astronaut Centre at the ESA, Dr Jon Scott, added: “To better understand the effects of the space environment on human physiology and the challenges that ESA astronauts are likely to face during future exploration missions, we are actively engaging with academic institutions from across ESA’s Member States.

“We are very pleased to have established this joint project with the University of Bath and to have access to the world-class expertise contained within its Department for Health. We look forward to a productive co-operation with the University and are confident that the findings generated by the project will make a significant contribution to both terrestrial rehabilitation and human spaceflight knowledge”.

###

Media Contact
Andy Dunne
[email protected]
01-225-386-319

Original Source

https://www.bath.ac.uk/announcements/take-off-for-european-space-agency-funded-rehabilitation-project-at-the-university-of-bath/

Tags: PhysiologyPlanets/MoonsRehabilitation/Prosthetics/Plastic SurgerySpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

CK2–PRC2 Signal Drives Plant Cold Memory Epigenetics

August 2, 2025
blank

AI-Driven Protein Design Advances T-Cell Immunotherapy Breakthroughs

August 1, 2025

Melanthiaceae Genomes Reveal Giant Genome Evolution Secrets

August 1, 2025

“Shore Wars: New Study Tackles Oyster-Mangrove Conflicts to Boost Coastal Restoration”

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gut γδ T17 Cells Drive Brain Inflammation via STING

Agent-Based Framework for Assessing Environmental Exposures

MARCO Drives Myeloid Suppressor Cell Differentiation, Immunity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.