• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Tailored light inspired by nature

Bioengineer by Bioengineer
July 29, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers develop for the first time light fields using caustics that do not change during propagation

IMAGE

Credit: WWU – Alessandro Zannotti

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during propagation. This represents an immense challenge since light typically broadens during propagation, a phenomenon known as diffraction. So-called propagation-invariant or non-diffracting light fields therefore do not seem possible at first glance. If it were possible to produce them, they would enable new applications such as light disk microscopy or laser-based cutting, milling or drilling with high aspect ratios.

An international research team from the Universities of Birmingham (UK), Marseille (France) and Münster (Germany) has now succeeded for the first time to create arbitrary nondiffracting beams. “We implement an approach inspired by nature, in which any desired intensity structure can be specified by its boundaries,” explains one of the authors of the study, Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster. The authors cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses: spectacular ray structures named caustics. They are bright focus lines that overlap, and thereby building networks that can be exploited for nondiffracting propagation. The team developed a method to use these caustics as a basis for the generation of arbitrary structures, and has thus created an intelligent manipulation of ray propagation. In this way, countless new types of laser beams can be formed on the micrometer scale, opening up completely new perspectives in optical materials processing, multidimensional signal transmission or advanced high resolution imaging.

Only some years ago it was possible to realize a few light fields that exhibit these non-diffracting properties, even though the theoretical idea is older: Concentric ring structures like the Bessel beam could be produced in a propagation-invariant way. The theory predicts a whole class of beams whose transverse shape is generated on elliptical or parabolic trajectories and represent natural solutions of the wave equation. Although there has long been a need for such customized light beams with these properties, they have hardly been produced experimentally because the invariance of the transverse intensity structure must be maintained during propagation.

###

The study results of the team were recently published in the journal “Nature Communications“.

Original publication:

A. Zannotti, C. Denz, M. A. Alonso, M. R. Dennis (2020): Shaping caustics into propagation invariant light. Nature Communications; DOI: 10.1038/s41467-020-17439-3

Media Contact
Cornelia Denz
[email protected]

Original Source

https://www.uni-muenster.de/news/view.php?cmdid=11165&lang=en

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-17439-3

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Nurses’ Insights on Implementing Patient-Reported Outcomes

October 5, 2025

Exploring NK Cell Therapies for Solid Tumors

October 5, 2025

Acupuncture Use for Low Back Pain in China

October 5, 2025

Strong-Field Laser Passivation Cuts Stainless Steel Corrosion

October 5, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    91 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nurses’ Insights on Implementing Patient-Reported Outcomes

Exploring NK Cell Therapies for Solid Tumors

Acupuncture Use for Low Back Pain in China

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.