• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Tadpole nerve regeneration capacity provides clue to treating spinal cord injury

Bioengineer by Bioengineer
March 31, 2021
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Atsushi Natsume

Nagoya University researchers have identified a gene that plays a crucial role in regenerating neurons of African clawed frog tadpoles, which has an unusually high capacity for nerve regeneration. Their study, recently published in the journal iScience, showed that introducing the gene into mice with spinal cord injury (SCI) led to a partial recovery of their lost motor functions. These findings could contribute to the development of a new therapy for SCI, which often causes a person to experience permanent and severe physical and neurological disabilities.

Repairing spinal cord injuries in humans and other mammals is difficult, partly because of their limited ability to repair and regenerate neural tissues in the spinal cord. In contrast, there are animals with a high capacity for nerve regeneration, such as the African clawed frog. “As a tadpole, it is fully capable of functional recovery after a spinal cord injury,” said Drs. Dasfne Lee-Liu and Juan Larrain from the P. Universidad Catolica de Chile in their study, “Genome-wide expression profile of the response to spinal cord injury in Xenopus laevis reveals extensive differences between regenerative and non-regenerative stages,” published in 2014.

In this context, the Nagoya University research team conducted a collaborative study with Drs. Lee-Liu and Larrain to identify transcription factors that regulate nerve regeneration in the African clawed frog tadpole, with the aim of inducing regenerative effects in mammals. The team comprehensively analyzed the gene expression profiles of tadpoles in response to SCI, and found that a gene called Neurod4 was expressed predominantly during nerve regeneration. The team thus hypothesized that this gene is a key factor in the regeneration of neural tissues after an injury.

In this study, the team also focused on the fact that in mammals, neural stem cells (known as self-renewing cells) derived from the ependymal cells lining the central canal of the spinal cord are activated and proliferate in the early stage of SCI, although these types of neural stem cells eventually transform into astrocytes — a type of cell that forms rigid glial scars.

“Taking these things together, we thought that introducing Neurod4 into activated neural stem cells may help regenerate neurons,” said Associate Professor Atsushi Natsume of the Nagoya University Graduate School of Medicine, the corresponding author of the study.

To that end, the team conducted experiments in which the Neurod4 gene was introduced to activated neural stem cells in mice just after SCI. The researchers observed that the neural stem cells were successfully converted into neurons and, interestingly, the mice occasionally moved their paralyzed hind legs. Dr. Natsume explained, “Neurod4 introduced into activated neural stem cells facilitates the production of relay neurons, which project to motor neurons of the hind legs. As a secondary effect, glial scar formation was suppressed after the subacute phase of spinal cord injury. This effect allows an environment that was conducive for axons to elongate beyond the injury site and form synapses, thereby improving the motor function of the hind legs.”

“Our method is to introduce a neuro regenerative gene directly into neural stem cells that are already present in the spinal cord. This could lessen the problems of rejection and tumor formation, which often occur in conventional stem cell transplantation methods. We believe this study will contribute to the development of new therapeutic approaches to spinal cord injury,” he added.

###

The study, “Neurod4 converts endogenous neural stem cells to neurons with synaptic formation after spinal cord injury,” was published in the journal iScience on January 20, 2021 at DOI?10.1016/j.isci.2021.102074.

Authors:

Toshiki Fukuoka, Akira Kato, Masaki Hirano, Fumiharu Ohka, Kosuke Aoki, Takayuki Awaya, Alimu Adilijiang, Sachi Maeda, Kuniaki Tanahashi, Junya Yamaguchi, Kazuya Motomura, Hiroyuki Shimizu, Yoshitaka Nagashima, Ryo Ando, Toshihiko Wakabayashi, Dasfne Lee-Liu, Juan Larrain, Yusuke Nishimura1, Atsushi Natsume

About Nagoya University, Japan

Nagoya University has a history of about 150 years, with its roots in a temporary medical school and hospital established in 1871, and was formally instituted as the last Imperial University of Japan in 1939. Although modest in size compared to the largest universities in Japan, Nagoya University has been pursuing excellence since its founding. Six of the 18 Japanese Nobel Prize-winners since 2000 did all or part of their Nobel Prize-winning work at Nagoya University: four in Physics – Toshihide Maskawa and Makoto Kobayashi in 2008, and Isamu Akasaki and Hiroshi Amano in 2014; and two in Chemistry – Ryoji Noyori in 2001 and Osamu Shimomura in 2008. In mathematics, Shigefumi Mori did his Fields Medal-winning work at the University. A number of other important discoveries have also been made at the University, including the Okazaki DNA Fragments by Reiji and Tsuneko Okazaki in the 1960s; and depletion forces by Sho Asakura and Fumio Oosawa in 1954.
Website: http://en.nagoya-u.ac.jp/

Media Contact
Atsushi Natsume
[email protected]

Original Source

https://en.nagoya-u.ac.jp/research/activities/news/index.html

Related Journal Article

http://dx.doi.org/10.1016/j.isci.2021.102074

Tags: BioinformaticsCell BiologyGene TherapyMedicine/HealthTrauma/Injury
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

LONP1 Controls Mitochondrial Folding, Impacts Diabetes

August 3, 2025
Astrocyte Fate in Mouse Septum Driven by Origins, Signals

Astrocyte Fate in Mouse Septum Driven by Origins, Signals

August 3, 2025

AI Predicts Sinus Surgery Outcomes from Images

August 3, 2025

Fat Cell N-Acetylaspartate Controls Post-Meal Body Temperature

August 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    47 shares
    Share 19 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Zinc Finger Protein 683 Predicts Kidney Cancer Immunity

LONP1 Controls Mitochondrial Folding, Impacts Diabetes

Boosting Healthcare Wearables with Self-Supervised Learning

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.