• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Table scraps can be used to reduce reliance on fossil fuels

Bioengineer by Bioengineer
May 23, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Wasted food can be affordably turned into a clean substitute for fossil fuels.

New technology developed by researchers at the University of Waterloo engineers natural fermentation to produce a biodegradable chemical that can be refined as a source of energy.

The chemical could also be used to replace petroleum-based chemicals in a host of products including drugs and plastic packaging.

“People like me, environmental biotechnologists, look at food waste as a tremendous resource,” said Hyung-Sool Lee, a civil and environmental engineering professor at Waterloo. “With the right technologies, we can extract numerous useful chemicals and fuel from it.”

Wasted food in North America adds up to about 400 kilograms per person per year, with the worldwide economic loss estimated at $1.3 trillion every year. Most of that discarded food goes into landfills.

Technology already exists to reduce the environmental impact by diverting food waste, collecting methane gas as it is broken down by microorganisms and burning the gas to produce electricity.

But Lee said that system – known as anaerobic digestion – ultimately yields little or no net benefits when the high costs of food waste mixing and wastewater treatment are taken into account.

The technology developed at Waterloo dramatically cuts those costs by collecting and recirculating leachate – a microbial cocktail mixed with microorganisms and nutrients – that trickles through the food waste in holding tanks, rather than stimulating biodegradation by intensive mixing.

As they eat and digest food waste, the microorganisms in those tanks also spit out a chemical byproduct called carboxylate, which has numerous potential uses as a substitute for petroleum, or crude oil.

“The amount of food we waste is staggering,” said Lee, director of the Waterloo Environmental Biotechnology Lab. “That’s what motivated me to find a better way to utilize it to mitigate the damage caused by fossil fuels.”

In addition to being cheaper and more productive than existing technology, he said, the system is designed for use on small and medium scales.

“Even small towns could have their own systems,” said Lee, who collaborates with GHD, a consulting firm in the clean-technology market. “Food waste collected in green bin programs wouldn’t have to be transported long distances to enormous, centralized facilities.”

The next step in the research involves testing the technology on a larger scale, with a long-term goal to commercialize it within four to five years.

###

The latest in a series of papers on the work, Food waste treatment with a leachate bed reactor: Effects of inoculum to substrate ratio and reactor design, appears in the journal Bioresource Technology.

For more information about engineering research at the University of Waterloo, please visit: https://uwaterloo.ca/waterloo-engineering-research/

Media Contact
Matthew Grant
[email protected]

Related Journal Article

https://uwaterloo.ca/news/news/table-scraps-can-be-used-reduce-reliance-fossil-fuels-0
http://dx.doi.org/10.1016/j.biortech.2019.121350

Tags: Chemistry/Physics/Materials SciencesClimate ChangeEnergy SourcesEnergy/Fuel (non-petroleum)
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New AI Technology Revolutionizes Visualization Inside Fusion Energy Systems

October 1, 2025
Urban Air Harbors Pathogenic Yeast Strains Absent from Coastal Areas

Urban Air Harbors Pathogenic Yeast Strains Absent from Coastal Areas

October 1, 2025

Dual Dynamic Helical Poly(disulfide)s: Adaptive, Recyclable Polymers

October 1, 2025

Atom-photon entanglement breakthrough opens new horizons for future quantum networks

September 30, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    89 shares
    Share 36 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    62 shares
    Share 25 Tweet 16
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Light Quality Impacts Growth of Populus Schneideri

Axon Regeneration Genes and Immune Response in Spine Injury

Augmented Intelligence: A Boost for Medicine’s Future

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.