• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

T2K insight into the origin of the universe

Bioengineer by Bioengineer
April 15, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo

Lancaster physicists working on the T2K major international experiment in Japan are closing in on the mystery of why there is so much matter in the Universe, and so little antimatter.

The Big Bang should have created equal amounts of matter and antimatter in the early Universe but instead the Universe is made of matter. One of the greatest challenges in physics is to determine what happened to the antimatter, or why we see an asymmetry between matter and antimatter.

Tokai to Kamioka (T2K) researchers have revealed in the journal Nature that almost half of the possible parameter values that determine matter-antimatter asymmetry in the Universe have been ruled out.

Dr Laura Kormos, Senior Lecturer in Physics at Lancaster University, head of Lancaster’s neutrino physics group and researcher at T2K, said: “Our data continue to suggest that Nature prefers almost the maximal value of asymmetry for this process. It would be just like Mother Nature to have these seemingly insignificant, difficult to study, tiny particles be the driver for the existence of the universe.”

The T2K experiment studies neutrinos, one of the fundamental particles that make up the Universe and one of the the least well understood. Yet every second trillions of neutrinos from the sun pass through your body. These tiny particles, produced copiously within the sun and other stars, come in three varieties or flavours, and may spontaneously change, or oscillate, from one to another.

Each flavour of neutrino has an associated antineutrino. If flavour-changing, or oscillations, are different for neutrinos and antineutrinos, it could help to explain the observed dominance of matter over antimatter in our Universe, a question that has puzzled scientists for a century.

For most phenomena, the laws of physics provide a symmetric description of the behaviour of matter and antimatter. However, this symmetry must have been broken soon after the Big Bang in order to explain the observation of the Universe, which is composed of matter with little antimatter.

A necessary condition is the violation of the so-called Charge-Parity (CP) symmetry. Until now, there has not been enough observed CP symmetry violation to explain the existence of our Universe.

T2K is searching for a new source of CP symmetry violation in neutrino oscillations that would manifest itself as a difference in the measured oscillation probability for neutrinos and antineutrinos.

The parameter governing the matter/antimatter symmetry breaking in neutrino oscillation, called the δcp phase, can take a value from -180º to 180º. For the first time, T2K has disfavoured almost half of the possible values at the 99.7% (3σ) confidence level, and is starting to reveal a basic property of neutrinos that has not been measured until now.

Dr Helen O’Keeffe, Senior Lecturer in Physics at Lancaster University and researcher at T2K, said: “This result will help shape future stages of T2K and the development of next-generation experiments. It is a very exciting outcome from many years of work.”

This is an important step on the way to knowing whether or not neutrinos and antineutrinos behave differently.

###

Media Contact
Gillian Whitworth
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41586-020-2177-0

Tags: AstrophysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesParticle PhysicsPlanets/MoonsSpace/Planetary ScienceStars/The Sun
Share14Tweet9Share3ShareShareShare2

Related Posts

blank

Optimizing Energy-Level Alignment in Perovskite Solar Cells: Insights from an Energy Flow Perspective

September 9, 2025
blank

Tiny Yet Mighty: Metamaterial Lenses Revolutionize Phones and Drones

September 9, 2025

UZH Device Pioneers Search for Light Dark Matter

September 8, 2025

Unlocking Insulators: How Light Pulses Set Electrons Free

September 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hsa_circ_0077007: New Hope for Colorectal Cancer

Extracting Easy-to-Digest Protein from Trout Residues

Fast Hyperspectral Imaging Quantifies Ship NO2, SO2 Emissions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.