• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, June 5, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

T cells can activate themselves to fight tumors

Bioengineer by Bioengineer
May 8, 2023
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

When you need a bit of motivation, it often has to come from within. New research suggests cancer-fighting immune cells have found a way to do just that.

t cells

Credit: National Institute of Allergy and Infectious Diseases

When you need a bit of motivation, it often has to come from within. New research suggests cancer-fighting immune cells have found a way to do just that.

Scientists at University of California San Diego have discovered a property of T cells that could inspire new anti-tumor therapeutics. Through a previously undescribed form of cell auto-signaling, T cells were shown to activate themselves in peripheral tissues, fueling their ability to attack tumors.

The study, published May 8, 2023 in Immunity, was led by study first author and postdoctoral fellow Yunlong Zhao, PhD, and co-senior authors Enfu Hui, PhD, professor in the School of Biological Sciences at UC San Diego and Jack D. Bui, MD, PhD, professor of pathology at UC San Diego School of Medicine.

T cells are a type of white blood cell that protect against infection and help fight cancer. In the lymph organs, T cells are trained by antigen-presenting cells, which, as their name suggests, present an antigen (a piece of tumor or pathogen) to T cells, stimulating an immune response. 

A key part of this process is the binding of B7, a protein on the surface of antigen-presenting cells, with CD28, a receptor on T cells. This B7:CD28 interaction is a major driver of the T cell immune response. Once trained, T cells leave the lymph organs and travel through the body to find and attack their targets.

More recent work has since revealed that T cells can actually produce their own B7 or take the B7 protein from the antigen-presenting cells and bring it along with them, but exactly why they do this has remained unclear. This also led the researchers to wonder whether T cells, now equipped with both a receptor and its ligand, might be able to activate themselves. 

Through a series of experiments, the researchers found that T cells could indeed self-activate by puckering their cell membrane inwards to allow the B7 protein and the CD28 receptor to bind each other. 

“People often assume the cell membrane is flat, but it actually looks more like a coastline with lots of coves and bays,” said Hui. “We found that local membrane curvatures are actually a rich dimension of T cell auto-signaling, which is paradigm-shifting in a field that assumed this only happened across cells.”

The researchers then confirmed that this auto-stimulation was indeed effective in boosting T cell function and slowing tumor growth in a mouse model of cancer. 

“When a T cell exits a lymph organ and enters a tumor environment, it’s like leaving home and going for a long trek in the woods,” said Bui. “The same way a hiker brings snacks to sustain them through the trip, the T cells bring their own signal to keep them going. Now the exciting question is, how much farther will they go if we can provide more food?” 

Refueling the T cells could be achieved by either providing more sources of B7 in the lymph organs or in the tumor itself. Another option, the authors say, would be to develop a cell therapy in which engineered T cells with enhanced auto-signaling capabilities were delivered directly to a patient. 

The researchers also suggest this system could be used as a cancer biomarker, in that patients whose tumors contain many T cells with B7 may be doing better at fighting the disease. 

On the other hand, in patients with autoimmune diseases such as lupus or multiple sclerosis, physicians could prescribe endocytosis inhibitors to prevent the cell from forming concavities, effectively blocking the B7:CD28 interaction to reduce overactive T cell function. 

“We’ve found a way that T cells are able to live outside of their normal homes and survive in the foreign environment of a tumor, and we can now develop clinical strategies for increasing or decreasing these pathways to treat disease,” said Hui. 

Co-authors include: Yunlong Zhao, Christine Caron, Ya-Yuan Chan, Calvin K. Lee, Xiaozheng Xu, Jibin Zhang and Takeya Masubuchi at UC San Diego, as well as Chuan Wu at the National Cancer Institute. 

# # # 



Journal

Immunity

DOI

10.1016/j.immuni.2023.04.005

Share12Tweet8Share2ShareShareShare2

Related Posts

Localization of the FERRY complex in neurons.

BRAIN LOGISTICS: Missing link explains mRNA delivery in brain cells

June 2, 2023
Baboon at Mahale Mountains in Tanzania

Genomes of 233 primate species sequenced

June 2, 2023

New grasshopper species from central Texas honor Willie Nelson and Jerry Jeff Walker

June 2, 2023

Ancient viruses discovered in coral symbionts’ DNA

June 1, 2023

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    40 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Deep sea surveys detect over five thousand new species in future mining hotspot

    35 shares
    Share 14 Tweet 9
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phase 3 SWOG Cancer Research Network trial, led by a City of Hope researcher, demonstrates one-year progression-free survival in 94% of patients with Stage 3 or 4 classic Hodgkin lymphoma who received a checkpoint inhibitor combined with chemotherapy

The promise of novel FolRα-targeting antibody drug conjugate in recurrent epithelial ovarian cancer

Carbon-based stimuli-responsive nanomaterials: classification and application

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In