• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, June 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Synthetic messenger boosts immune system

Bioengineer by Bioengineer
September 6, 2014
in Immunology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Specific immune cells, known as T lymphocytes, have to be activated so that the body can develop long-term protection against infections. Previously, it was believed that this process only took place in the lymph nodes and the spleen. But now scientists from Klinikum rechts der Isar at Technische Universität München have discovered that T cells can also be activated in the liver – via a much faster, more direct signaling pathway. The findings, which have been published in Cell Reports, could lead to improvements in the formulation of vaccines.

Synthetic messenger boosts immune system

Prof. Percy Knolle (right) and his research group investigate the local regulation of immune responses in the liver. Photo Credit: A. Heddergott / TUM

When a pathogen attacks a healthy cell in the body, T lymphocytes are tasked with identifying and destroying the infected cell. Scientists know that they undergo a “training program” for this task in the lymph nodes or the spleen. “Programming cells” play a key role here, presenting pathogen constituents to the T lymphocytes. This is how the T lymphocytes learn to recognize these components and become specialized “killer” cells. Research teams led by Prof. Percy Knolle from Klinikum rechts der Isar and the University of Bonn and Prof. Stefan Rose-John from the University of Kiel have now discovered a second site where T lymphocytes can be programmed to attack pathogens.

The researchers identified the liver as an immunological organ where special tissue cells act as “programming cells” to prepare the T lymphocytes for their battle against infected cells. They were also able to decrypt the exact molecular code used by these tissue cells to equip the T lymphocytes with special infection-fighting capabilities. “This new mechanism is particularly interesting because the T cells are activated directly and very rapidly – in just 18 hours instead of 72,” explains Percy Knolle.

Synthetic messenger as new adjuvant

The key to all this is a natural messenger from the interleukin family: IL-6/sIL-6R. It only becomes effective when the two individual components (IL-6 and sIL-6R) combine. Previously, scientists were only aware of a role for the substance in regeneration and the development of inflammatory responses. But now the research teams have shown that the T lymphocytes in the liver engage in direct contact with the “programming cells” found there, and that IL-6/sIL-6R very efficiently activates the T cells.

Once the researchers had uncovered this new mechanism, they were able to use a synthetic designer messenger developed by Stefan Rose-John, known as Hyper-IL-6, for the targeted stimulation of T lymphocytes. In this construct, the two individual components which are normally separated are directly and firmly linked to each other. “In combination with the familiar stimulation mechanisms of the T lymphocytes, Hyper-IL-6 can be used to effect a specific ‘hyper stimulation’ of T lymphocytes for particular therapeutic purposes. This could be an important step in helping us improve vaccine formulations,” adds Percy Knolle.

As well as components of the pathogen, current vaccines also contain substances known as adjuvants. After a few intermediate steps, adjuvants indirectly activate the T lymphocytes and help to build up immunity. “We are placing high hopes on hyper-IL-6 as an effective new adjuvant capable of activating T cells directly and thus more rapidly. This could for example help us tackle chronic bacterial or viral infections which have not previously responded to vaccinations,” he concludes.

Story Source:

The above story is based on materials provided by Technische Universitaet Muenchen.

Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    159 shares
    Share 64 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    75 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    69 shares
    Share 28 Tweet 17
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

MOVEO Project Launched in Málaga to Revolutionize Mobility Solutions Across Europe

Nerve Fiber Changes in Parkinson’s and Atypical Parkinsonism

Magnetic Soft Millirobot Enables Simultaneous Locomotion, Sensing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.