• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Synthetic genetic circuits reprogram plant roots

Bioengineer by Bioengineer
October 26, 2022
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Controlling the activity of genes is an important step in engineering plants for improved bioenergy crops. This research developed synthetic genes that can be combined to achieve specific patterns of gene expression within the plant. The expression of the synthetic genes is programmed in the form of Boolean (“AND,” “OR,” and “NOT”) logic gates that work in a similar way to computer circuit boards. Using the synthetic gene circuits, the researchers successfully created predictable, novel expression patterns of fluorescent proteins. Finally, they used similar gene circuits to redesign root architecture by tuning the number of root branches. 

Synthetic Genetic Circuits Reprogram Plant Roots

Credit: Image courtesy of Jennifer Brophy, Stanford University.

The Science

Controlling the activity of genes is an important step in engineering plants for improved bioenergy crops. This research developed synthetic genes that can be combined to achieve specific patterns of gene expression within the plant. The expression of the synthetic genes is programmed in the form of Boolean (“AND,” “OR,” and “NOT”) logic gates that work in a similar way to computer circuit boards. Using the synthetic gene circuits, the researchers successfully created predictable, novel expression patterns of fluorescent proteins. Finally, they used similar gene circuits to redesign root architecture by tuning the number of root branches. 

The Impact

To understand biological functions and design new biotechnology applications, scientists need to precisely manipulate gene expression. This is the process that converts instructions in DNA into proteins and other products that allow cells to do their jobs in an organism. Controlling specific patterns of gene expression in plants is challenging. One potential solution is synthetic genetic circuits. However, tuning circuit activity across different plant cell types has proven difficult. This research developed new genetic circuits that allow precise control of the root architecture. As roots are important for the uptake of water and nutrients, this approach will allow the design of tailored root architectures. This will in turn help researchers to engineer bioenergy crops with improved characteristics for growth in marginal lands. 

Summary

To establish synthetic gene circuits capable of predictably regulating gene expression in plants, scientists adapted a large collection of bacterial gene regulators for use as synthetic activators or repressors of gene expression in plants, also known as transcription factors. Using a transient expression system, the researchers demonstrated that the synthetic transcription factors and their target DNA sequences (promoters) are able to direct specific and tunable control of gene expression. They designed synthetic promoters that responded to one synthetic transcription factor to work as simple logic gates that responded to one input, while more complex gates required synthetic promoters that responded to multiple inputs. The research found these logic gates to control expression in predictable ways according to the specific Boolean rules encoded in the engineered genes.

To implement synthetic gene circuits in a multicellular context, the researchers used Arabidopsis roots as a model system where endogenous promoters drove tissue-specific expression of the synthetic transcription factors. The gene circuits generated novel expression patterns that were the result of successfully performing logical operations. The researchers further used one of the logic gates to quantitatively control the expression of a hormone signaling regulator to tune the amount of root branching in the root system of Arabidopsis. These results demonstrate that it is now possible to program gene expression across plant cell types using genetic circuits, providing a roadmap to engineer more resilient bioenergy crops.

 

Funding

Funding was provided by the Department of Energy Office of Science, Biological and Environmental Research program; the Burroughs Wellcome Fund Career Awards at the Scientific Interface; the Chan Zuckerberg Biohub; the Howard Hughes Medical Institute; and the Simons Foundation.



Journal

Science

DOI

10.1126/science.abo4326

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Synthetic genetic circuits as a means of reprogramming plant roots

Article Publication Date

11-Aug-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Sandra Purdy

People with arthritis 20% less likely to be in work

January 30, 2023
FAIRY flying robot

A fairy-like robot flies by the power of wind and light

January 30, 2023

UK’s Overseas Territories at ongoing risk from wide range of invasive species

January 30, 2023

World-first guidelines created to help prevent heart complications in children during cancer treatment

January 29, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

People with arthritis 20% less likely to be in work

A fairy-like robot flies by the power of wind and light

UK’s Overseas Territories at ongoing risk from wide range of invasive species

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In