• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Synergy between biotech and classical control tactics rid US of invasive pest

Bioengineer by Bioengineer
December 21, 2020
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Agricultural Research Service-USDA.

Maricopa, Arizona, December 21, 2020–Genetically engineered cotton and classical pest control tactics combined to rid the United States and Northern Mexico of a devastating pest, according to a new study by Agricultural Research Service (ARS) and University of Arizona (UofA) scientists published in the Proceedings of the National Academy of Sciences.

For most of the past century, the pink bollworm was the major cotton pest in the Southwest. For decades, cotton growing in Arizona, California, Texas, and New Mexico was only possible because farmers sprayed pesticides an average of 12 times a year, nine specifically against pink bollworm. Some farmers sprayed as often as 25 times a year without reaching control. In 1990, pink bollworm cost cotton growers $48 million in Arizona alone.

A coordinated and multitactical list of areawide and integrated pest management strategies were developed over the years in hopes of putting down this pest while replacing expensive and environmentally hazardous chemical pesticides, explained research entomologist Jeffrey Fabrick, one of the authors of the study. Fabrick is with the ARS-USDA Pest Management and Biocontrol Research Unit in Maricopa, Arizona.

“By analyzing computer simulations and 21 years of field data from Arizona, we proved that genetically engineered cotton and release of billions of sterile pink bollworm moths acted synergistically to suppress this pest,” Fabrick said.

Both the computer simulations and what was seen in the field from 2006 to 2010 showed neither of the two tactics would have worked if used alone, he added.

“Collaboration among farmers and scientists from government, industry, and academia was essential for the remarkable success of the pink bollworm eradication program,” said Bruce Tabashnik, lead author of the study and regents professor in the UofA Department of Entomology.

In the late 1960s and 1970s, ARS scientists first began powering up the fight against pink bollworm. They helped create the artificial pheromones that allowed precise tracking of the pest as well as the first synthetic diet and methods for raising sterile pink bollworm moths to disrupt mating. Releasing synthetic female sex pheromone in cotton fields also was used to confuse males and disrupt mating Another important tactic required farmers to plow down cotton residues after harvest to reduce overwintering survival of pink bollworm.

Enter genetically modified Bt cotton in 1996. Bt cotton is engineered to produce one or more proteins from the bacterium Bacillus thuringiensis (Bt for short) that kills pink bollworm and other related caterpillar pests and are harmless to people and most other insects, unlike broad spectrum pesticides. Growing mostly Bt cotton knocked the pink bollworm population down by 90 percent in 10 years. At the same time, farmers continued employing other techniques.

By 2006, for the first time, eradication became a practical reality. With an eye to finishing off pink bollworm, detailed cooperative plans were developed by a coalition that included cotton farmers, grower organizations, ARS researchers, USDA’s Animal and Plant Health Inspection Service (APHIS), the biotech industry, the Arizona Department of Agriculture, the Arizona Cotton Research and Protection Council, and UofA extension and research scientists. Many of these groups’ counterparts in Northern Mexico were also were also recruited.

APHIS also scaled up production of sterile pink bollworm moths so that billions of them were unleashed by airplanes to overwhelm any field populations of the pest.

Removal of pink bollworm saved U.S. cotton farmers $192 million from 2014 to 2019 alone, according to the study. Pink bollworm suppression has also facilitated integrated pest management for all other cotton pests. Overall, this reduced insecticide use by 82 percent, avoiding application of 25 million pounds of insecticides in Arizona alone during the past two decades. It improved the overall environment and brought back beneficial insects as the ecology returned to a more natural balance.

###

The Agricultural Research Service is the U.S. Department of Agriculture’s chief scientific in-house research agency. Daily, ARS focuses on solutions to agricultural problems affecting America. Each dollar invested in agricultural research results in $17 of economic impact.

Media Contact
Kim Kaplan
[email protected]

Tags: AgricultureBiodiversityBiologyBiotechnologyEcology/EnvironmentEntomology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Revolutionary Cyclic Thioether Additive Boosts Lithium Metal Batteries to 3,000 Stable Cycles!

August 25, 2025

Breakthroughs in Screening Techniques and Point-of-Care Diagnostics Transform Colorectal Cancer Detection

August 25, 2025

Introducing the Second Beijing Consensus on Holistic Integrative Medicine for Managing Helicobacter pylori-Associated Disease-Syndrome

August 25, 2025

Innovative Technique Unveiled for Probing Atomic Internal Structures

August 25, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    143 shares
    Share 57 Tweet 36
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Cyclic Thioether Additive Boosts Lithium Metal Batteries to 3,000 Stable Cycles!

Breakthroughs in Screening Techniques and Point-of-Care Diagnostics Transform Colorectal Cancer Detection

Introducing the Second Beijing Consensus on Holistic Integrative Medicine for Managing Helicobacter pylori-Associated Disease-Syndrome

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.