• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, December 5, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Synergistic work of cations in anion exchange membranes for OH- transport in fuel cells

Bioengineer by Bioengineer
September 30, 2023
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Anion exchange membrane fuel cells (AEMFCs) have gained attention in the process of fuel cell development because they operate in alkaline environments, the redox reaction rate at the electrodes is faster, and non-precious metal catalysts such as Ni, Co, and Ag can be used, which reduces the cost of fuel cells. However, the mobility of OH– is only 56.97% of that of H+ under the same conditions, and its stability is poor, so improving the ionic conductivity and mechanical properties of anion exchange membranes (AEM) is the key to the commercialization of AEMFC. Recently, a team of scientists has constructed a poly (p-terphenyl isatin) anion exchange membrane with quaternary ammonium and piperidine cations synergistic functionalization that provides excellent mechanical properties and OH-ion conductivity for alkaline anion membrane fuel cells. Their work is published in the journal Industrial Chemistry & Materials on 14 September 2023.

Schematic application of AEM with multiple cationic side alkyl chains

Credit: Zhe Wang, Changchun University of Technology, Changchun, China.

Anion exchange membrane fuel cells (AEMFCs) have gained attention in the process of fuel cell development because they operate in alkaline environments, the redox reaction rate at the electrodes is faster, and non-precious metal catalysts such as Ni, Co, and Ag can be used, which reduces the cost of fuel cells. However, the mobility of OH– is only 56.97% of that of H+ under the same conditions, and its stability is poor, so improving the ionic conductivity and mechanical properties of anion exchange membranes (AEM) is the key to the commercialization of AEMFC. Recently, a team of scientists has constructed a poly (p-terphenyl isatin) anion exchange membrane with quaternary ammonium and piperidine cations synergistic functionalization that provides excellent mechanical properties and OH-ion conductivity for alkaline anion membrane fuel cells. Their work is published in the journal Industrial Chemistry & Materials on 14 September 2023.

AEM can act on alkaline fuel cells and in the form of transported OH–, greatly reducing production costs. This is a boost to the general application of clean energy, but the biggest challenge is the “trade-off” between the ionic conductivity and stability of anion exchange membranes. “Anion exchange membrane is an important component in fuel cells, and the performance of the membrane profoundly affects the performance and development of fuel cells. How to make a breakthrough in the performance of anion exchange membrane and how to achieve high power density are the issues that our research team has been exploring,” explains Zhe Wang, a professor at the Changchun University of Technology.

Most of the conventional anion exchange membrane polymer backbones contain ether bonds, whose subsequent reactions are not only toxic and harmful, but also highly susceptible to attack and degradation during OH– transport. Not only that, the presence of hydrophilic groups in the polymers containing ether-bonded structures may cause the AEM to dissolve too much, leading to a sharp decrease in its stability.

The researchers used a polymer backbone without ether bonds to fundamentally solve the problems associated with conventional backbones. The quaternary ammonium cation and piperidine cation in the anion exchange membrane work in concert to construct a tighter ion-transport channel, which reduces the activation energy required to transport OH– and facilitates the flow of OH– within the membrane. The piperidinium cation also has superior alkaline stability due to its cyclic conformation, while the alkali stability of a series of anion exchange membranes in the paper reached 800 h on the basis of the ether-bond-free backbone.

In addition to these aspects, the researchers also confirmed that the mechanical properties of poly (p-terphenyl isatin) series membranes are in an excellent state. The tensile strength of the pure membranes reaches more than 60 MPa, which provides a stable foundation for further functionalization of subsequent anion exchange membranes.

Looking ahead, the team hopes that their work will provide new ideas for the further development of anion exchange membranes. “Our next step will be to focus on targeting battery power density improvement to achieve the ultimate goal of industrialized application of anion-exchange membranes,” said Wang.

The research team includes Yiman Gu, Yanchao Zhang, Zhe Wang*, Di Liu, Yan Wang, Tianming Dong, Song Wang, Zhanyu Li, Jingyi Wu and Yijia Lei from the Changchun University of Technology.

This research is funded by the Natural Science Foundation of China, Jilin Provincial Science & Technology Department.


Industrial Chemistry & Materials is a peer-reviewed interdisciplinary academic journal published by Royal Society of Chemistry (RSC) with APCs currently waived. Icm publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, especially the important innovation of the low-carbon chemical industry, energy, and functional materials.



Journal

Industrial Chemistry and Materials

DOI

10.1039/D3IM00077J

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Synergistic functionalization of poly(p-terphenyl isatin) anion exchange membrane with quaternary ammonium and piperidine cations for fuel cells

Article Publication Date

14-Sep-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Myopia and ultrasonography

A farsighted approach to tackle nearsightedness #Acoustics23

December 5, 2023
ORNL engineer Karen White honored with ICALEPCS Lifetime Achievement Award

ORNL engineer Karen White honored with Lifetime Achievement Award

December 4, 2023

Georgia State professor granted $5 million to identify and characterize objects in space

December 4, 2023

Tiny electromagnets made of ultra-thin carbon

December 4, 2023

POPULAR NEWS

  • Figure 1

    Understanding rapid tendon regeneration in newts may one day help human athletes

    85 shares
    Share 34 Tweet 21
  • Study finds increasingly popular oral nicotine pouches do little to curb smokers’ cravings

    35 shares
    Share 14 Tweet 9
  • SMART researchers pioneer novel microfluidic method to optimise bone marrow stem cell extraction for advanced cell therapies

    34 shares
    Share 14 Tweet 9
  • UMass Amherst receives $2.5 million from Howard Hughes Medical Institute to reshape STEM education

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

American Eel as an emerging consumer target

New implants linked to less infection and better recovery from orthopedic surgery

Recycling concrete using carbon can reduce emissions and waste

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 58 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In