• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, March 4, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

SwRI receives $6.4 million in funding to design sCO2 oxy-fuel turbine

Bioengineer by Bioengineer
October 19, 2020
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Turbine to use coal syngas or natural gas as a fuel source

IMAGE

Credit: SwRI

SAN ANTONIO — Oct. 19, 2020 — Southwest Research Institute has received $6.4 mil-lion in funding from the U.S. Department of Energy (DOE) and other organizations to design a supercritical carbon dioxide (sCO2), oxy-fuel turbine for use in a direct-fired sCO2 power plant. The turbine, which can use either coal syngas or natural gas as a fuel source, minimizes harmful emissions released to the environment.

The Coal FIRST (Flexible, Innovative, Resilient, Small, Transformative) program aims to develop modular, state of the art efficiency, and near zero emissions power plants utilizing coal syngas fired sCO2 power cycles to meet the ramp rates and loads required for future energy needs with higher reliance on renewable energy sources. $5.1 million of the project’s funding will come from DOE, and SwRI will be collaborating with General Electric Global Research Center, Air Liquide, 8 Rivers Capital, LLC, Electric Power Research Institute, Inc., Purdue University and University of Central Florida.

“This project leverages the sCO2 power cycle and incorporates a direct-fired combustor like a traditional gas turbine but does it at much higher pressures and in a pure CO2 environment,” said SwRI Institute Engineer Dr. Jeff Moore, the project’s leader. “A power plant built with this technology can burn both coal and natural gas at state-of-the-art efficiency with truly zero emissions. The technology offers near 100% carbon capture, while producing no oxides of nitrogen or sulfur emissions typical of tradition-al coal-fired power plants.”

Coal syngas is created by partially combusting coal, which creates a gaseous stream of carbon monoxide and hydrogen. The process separates sulfur, mercury and other pollutants instead of releasing them into the atmosphere. That stream fuels the turbine and, when burned with pure oxygen, produces only water and near-pure CO2, which can be captured and sequestered for other uses.

“Our goal is to design the turbine for the coal plant of the future,” said Stefan Cich, a group leader in SwRI’s Rotating Machine Dynamics section and co-leader of the project team. “As more renewable energy is added to the energy mix, we need to develop smaller, efficient power plants that can come online quickly and meet energy demands when renewable sources are not available while still reducing overall emissions.”

The turbine is designed for use in an sCO2 power plant such as the 10 MWe facility under construction at SwRI’s San Antonio headquarters. These power cycles use super-critical CO2 as the thermal medium instead of water. Because sCO2 has properties of both a liquid and a gas, it can produce significantly more power from equipment a frac-tion of the size required by traditional power cycles.

“Oxy-fuel sCO2 cycles take these advantages even further, allowing for higher firing temperatures, improved efficiency and simpler carbon capture strategies,” Moore said.

SwRI has received numerous DOE and industry-funded projects to implement pilot-scale sCO2 power cycle components and system level equipment in addition to the 10 MWe Super Transformational Electric Power Pilot Plant under construction at SwRI. Work on the turbine is set to begin in the fall of 2020.

###

For more information, visit https://www.swri.org/industries/advanced-power-systems.

Media Contact
Joanna Carver
[email protected]

Original Source

https://www.swri.org/press-release/design-sCO2-oxy-fuel-turbine-coal-syngas-natural-gas?utm_source=EurekAlert!&utm_medium=Distribution&utm_campaign=Turbine-PR

Tags: Energy SourcesMechanical EngineeringResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Research contributes to understanding of hypersonic flow

March 4, 2021
IMAGE

New microcomb could help discover exoplanets and detect diseases

March 4, 2021

Purdue Research Foundation partners with IdentifySensors Biologics for COVID-19 technology

March 4, 2021

Air pollution fell sharply during lockdown

March 4, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    665 shares
    Share 266 Tweet 166
  • People living with HIV face premature heart disease and barriers to care

    83 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Cell BiologyTechnology/Engineering/Computer SciencePublic HealthEcology/EnvironmentInfectious/Emerging DiseasescancerBiologyMedicine/HealthClimate ChangeGeneticsMaterialsChemistry/Physics/Materials Sciences

Recent Posts

  • Research contributes to understanding of hypersonic flow
  • New microcomb could help discover exoplanets and detect diseases
  • Purdue Research Foundation partners with IdentifySensors Biologics for COVID-19 technology
  • Air pollution fell sharply during lockdown
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In