• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

‘Swiss Army knife’ catalyst can make natural gas burn cleaner

Bioengineer by Bioengineer
January 11, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Lowering the combustion temperature for methane

IMAGE

Credit: Photo: Jenny Fontaine/UIC

Reza Shahbazian-Yassar, professor of mechanical and industrial engineering at the University of Illinois Chicago.

Shahbazian-Yassar and colleagues facilitated the development of a cutting edge “Swiss Army knife” catalyst made up of 10 different elements – each of which on its own has the ability to reduce the combustion temperature of methane – plus oxygen. This unique catalyst can bring the combustion temperature of methane down by about half – from above 1400 degrees Kelvin down to 600 to 700 degrees Kelvin.

Their findings are reported in the journal Nature Catalysis.

In previously-published research, Shahbazian-Yassar and colleagues demonstrated the ability to create multi-element nanoparticle catalysts, known as high entropy alloys using a unique shock-wave technique. Before this, materials scientists didn’t make serious attempts to create nanoparticles out of more than three elements because of the tendency of each elements’ atoms to separate from each other and become useless.

Taking advantage of the unique real-time, high-temperature electron microscopy system at UIC, Shahbazian-Yassar’s team showed that high entropy nanoparticles made up of 10 metal oxides were highly stable at temperatures up to 1,073 degrees Kelvin and the individual elements were distributed evenly throughout each nanoparticle forming a single, solid-state stable crystalline structure.

Their metal oxide alloy contained various mixtures of transition metals, which are rare-earth elements, and noble metals plus oxygen.

“It is almost impossible to maintain a perfect mix of these elements in a solid phase due to the differences in atomic radius, crystal structure, oxidation potential, and electronic properties of the elements,” said Zhennan Huang, a Ph.D. student in Shahbazian-Yassar’s lab and co-first author in the paper. “But we were able to show that this is possible.”

“Among multiple alloys with multiple elements that we created, the particles made of 10 elements not only were most effective in reducing the combustion point of methane gas but also the most stable at those temperatures,” said Shahbazian-Yassar, who is a corresponding author on the paper.

The researchers believe the catalyst could be used to reduce the output of harmful greenhouse gases produced by burning natural gas in individual households, to power turbines and even in cars that run on compressed natural gas.

###

Tangyuan Li, Yonggang Yao, Menghao Yang, Jinglong Gao, Alexandra Brozena, Liangbing Hu, Yifei Mo, Glenn Pastel, Miaolun Jiao, Qi Dong, Jiaqi Dai and Shuke Li of the University of Maryland; Pengfei Xie, Kaizhu Zeng, Han Zong and Chao Wang of Johns Hopkins University; Zhenyu Liu and Guofeng Wang of the University of Pittsburgh; Miaofang Chi of Oak Ridge National Laboratory and Jian Luo of the University of California, San Diego, are co-authors on the paper.

Media Contact
Jackie Carey
[email protected]

Original Source

https://today.uic.edu/swiss-army-knife-catalyst-can-make-natural-gas-burn-cleaner

Related Journal Article

http://dx.doi.org/10.1038/s41929-020-00554-1

Tags: Biomedical/Environmental/Chemical EngineeringIndustrial Engineering/ChemistryTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Neighboring Groups Speed Up Polymer Self-Deconstruction

Neighboring Groups Speed Up Polymer Self-Deconstruction

November 28, 2025
blank

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    105 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Diabetes and Erectile Dysfunction: Insights from Western Uganda

Understanding College Students’ Acceptance of Traditional Chinese Medicine

Urban Immunization Data Insights from Kampala’s Private Sector

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.