• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

SUTD study uncovers how big droughts in the Greater Mekong trigger CO2 emission bursts

Bioengineer by Bioengineer
March 4, 2021
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Deeper understanding of the climate-water-energy nexus will significantly contribute towards planning and managing transnational power grids.

IMAGE

Credit: SUTD

A study on big droughts in the Greater Mekong region revealed findings that can help reduce the carbon footprint of power systems while providing insights into better designed and more sustainable power plants.

The study, titled ‘The Greater Mekong’s climate-water-energy nexus: how ENSO-triggered regional droughts affect power supply and CO2 emissions’, was published by researchers from the Singapore University of Technology and Design (SUTD) and the University of California, Santa Barbara, in the journal Earth’s Future.

Known as an important means to support economic growth in Southeast Asia, the hydropower resources of the Mekong River Basin have been largely exploited by the riparian countries. The researchers found that during prolonged droughts hydropower production reduces drastically, forcing power systems to compensate with fossil fuels — gas and coal — thus increasing power production costs and carbon footprint. As such, the vulnerability of hydropower dams to inter-annual changes in water availability hinders their ability to keep to the promise of offering clean energy.

Based on the 2016 energy demand, the researchers estimated that prolonged droughts reduce hydropower production in the Thai-Laotian grid (refer to image) by about 4,000 GWh/year, increasing carbon dioxide emissions by 2.5 million metric tonnes, and increasing costs by US$120 million in one year.

At the same time, power supply was surprisingly found not to be at risk during droughts. This finding suggested that some big coal plants may have a capacity larger than necessary, thus contributing adversely to the environment.

The researchers also found that these phenomena — droughts and shifts in energy generation mix — are largely caused by El Nino events. This happens when trade winds weaken, the equatorial Pacific Ocean’s surface is warmer than usual and less moisture is delivered to Southeast Asia from the Pacific. The bad news is that anthropogenic climate change may exacerbate El Nino events: if that happens, we will face a drier summer monsoon, with less water available for power systems.

So, what can we do to make power supply more sustainable?

“The answer may lie in mathematical models,” explained principal investigator Associate Professor Stefano Galelli from SUTD.

“Our study builds on a new generation of high-resolution water-energy models that explain how each individual power plant reacts to external conditions, such as droughts or increased electricity demand. We can use these models to coordinate water-energy operations across countries, or to prepare contingency plans at the onset of a big drought,” he added.

###

Media Contact
Jessica Sasayiah
[email protected]

Original Source

https://doi.org/10.1029/2020EF001814

Related Journal Article

http://dx.doi.org/10.1029/2020EF001814

Tags: Atmospheric ScienceClimate ChangeClimate ScienceDeveloping CountriesEarth ScienceEcology/EnvironmentHydrology/Water ResourcesMathematics/StatisticsResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Natural Plant Pigments: Genes, Extraction, and Food Effects

August 19, 2025
blank

Evaluating Innovations in Lithium-Ion Battery Thermal Management

August 19, 2025

Nanopores Boost Photocatalytic Methane to C3+ Hydrocarbons

August 19, 2025

Aggresomes Safeguard E. coli mRNA During Stress

August 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Natural Plant Pigments: Genes, Extraction, and Food Effects

Evaluating Innovations in Lithium-Ion Battery Thermal Management

Nanopores Boost Photocatalytic Methane to C3+ Hydrocarbons

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.