• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, January 22, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Sustainable regenerated isotropic wood

Bioengineer by Bioengineer
November 30, 2020
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: @SCIENCE CHINA PRESS

Since plastic was invented in the late 19th century, it was beginning to change human lives. The invention of plastic gives us a lightweight, strong and inexpensive material, which greatly facilitated daily life. Petroleum-based plastics play a critical role in human lives, but the flip side of the coin is, they possess a considerably increasing negative impact on the environment and human health. It’s unclear how long it will take for plastics to completely biodegrade into their constituent molecules. Estimates range from 450 years to never. Because plastics are hard to break down, waves and sunlight would have worn these non-degradable plastics into tiny bits, so-called microplastics. And those microplastics might be floating around the world’s oceans, sponging up toxins, waiting to be eaten by some hapless fish or oyster, and ultimately perhaps by one of us. In order to alleviate the hazards of plastic pollution, constructing sustainable materials for plastic substitute from all-green (i.e., 100 % bio-based) basic building blocks is a promising alternative option.

Nowadays, a team lead by Prof. Shu-Hong Yu from University of Science and Technology of China (USTC) report a high-performance sustainable regenerated isotropic wood (RGI-wood), constructed from surface nanocrystallized wood particles (SNWP) by efficient bottom-up strategy with micro/nanoscale structure design (Figure 1). Through surface nanocrystallization, a lot of cellulose nanofibers expand from the surface of wood sawdust and thus the properties of wood particles improved significantly. The obtained RGI-wood exceeds the limitation of the anisotropic, inconsistent mechanical properties, and inflammability of natural wood, making it a strong competitor to petroleum-based plastics. Mass production of large-sized RGI-wood can be achieved, overcoming the rareness of large-sized natural wood. Moreover, through this bottom-up strategy, a series of functional RGI-wood nanocomposites can also be prepared, which show great potential in diverse applications.

Based on the strong interaction between SNWP, high-performance RGI-wood can be obtained by the direct press. Through surface nanocrystallization of wood particles, RGI-wood exceeds the limitation of the anisotropic and inconsistent mechanical properties of natural wood with the isotropic flexural strength of ~170 MPa and flexural modulus of ~10 GPa. Comparing to natural wood, RGI-wood shows much higher flexural strength and modulus on both directions, due to the large surface area of cellulose nanofibers and long-range hydrogen bond interaction between SNWP. Moreover, RGI-wood also shows superior fracture toughness, ultimate compressive strength, hardness, impact resistance, dimensional stability, and fire retardancy to natural wood (Figure 2). As an all-green biopolymer material, RGI-wood is superior to petroleum-based plastics on mechanical properties, which allows RGI-wood to be a strong competitor to petroleum-based plastics on many application fields.

Moreover, because SNWP can perform as a great structural binder with the three-dimensional nano-network, this versatile bottom-up strategy holds promising of constructing a series of bulk functional composites. For example, by mixing SNWP with carbon nanotubes (CNTs) before pressing, the conductive smart RGI-wood can be prepared. The conductive smart RGI-wood has a lower percolation threshold and a lower exponent, indicating that CNTs can form a better conductive network than that of polymer/CNTs composite. Due to its high conductivity, this conductive smart RGI-wood shows excellent electromagnetic shielding performance (exceeds 90 dB in the X-band), which meets the requirements of shielding standards of precision electronic instruments. Additionally, this excellent electrical conductivity of conductive smart RGI-wood also allows it to self-heat through Joule heat at low voltages. A low heating voltage can effectively ensure the safety of self-heating devices while reducing energy consumption. Thus, the obtained conductive smart RGI-wood can be used as electromagnetic shielding materials and self-heating wallboard for smart buildings.

In short, this bottom-up strategy with micro/nanoscale structure design exceeds the limitation of the anisotropic, inconsistent mechanical properties and sizes of natural wood by introducing the surface nanocrystallization method of biomass particles. The micro/nanoscale structure design strategy can also be expanded to other biomass (e. g., leaf, rape straw, and grass, etc.), and a series of all-green sustainable structural materials can be made. With better mechanical properties than plastics, RGI-wood can become a strong competitor for petroleum-based plastics. Moreover, the RGI-wood and its nanocomposites show outstanding performance in various areas including mechanical properties, inflammability, smart materials, and building materials.

###

This research received funding from the National Natural Science Foundation of China, Innovative Research Groups of the National Natural Science Foundation of China, Key Research Program of Frontier Sciences, Chinese Academy of Sciences, the National Basic Research Program of China, and the Users with Excellence and Scientific Research Grant of Hefei Science Center of Chinese Academy of Sciences.

See the article:

Qing-Fang Guan, Zi-Meng Han, Huai-Bin Yang, Zhang-Chi Ling and Shu-Hong Yu

Regenerated isotropic wood

Natl Sci Rev; doi: 10.1093/nsr/nwaa230

https://doi.org/10.1093/nsr/nwaa230

Media Contact
Shu-Hong Yu
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwaa230

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Astronomers discover first cloudless, Jupiter-like planet

January 21, 2021
IMAGE

Bringing atoms to a standstill: NIST miniaturizes laser cooling

January 21, 2021

Combining best of both worlds for cancer modeling

January 21, 2021

Squeezing a rock-star material could make it stable enough for solar cells

January 21, 2021
Next Post
IMAGE

Professor Kyoung Mu Lee of Seoul National University has been selected as IEEE Fellow

IMAGE

RUDN University chemists developed a method to synthesize compounds for the pharmaceutics

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    64 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Medicine/HealthPublic HealthBiologyInfectious/Emerging DiseasesTechnology/Engineering/Computer SciencecancerMaterialsEcology/EnvironmentCell BiologyChemistry/Physics/Materials SciencesClimate ChangeGenetics

Recent Posts

  • Astronomers discover first cloudless, Jupiter-like planet
  • Advances in modeling and sensors can help farmers and insurers manage risk
  • Bringing atoms to a standstill: NIST miniaturizes laser cooling
  • Giant sand worm discovery proves truth is stranger than fiction
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In