• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, January 19, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Sustainable nylon production made possible by bacteria discovery

Bioengineer by Bioengineer
August 13, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Nylon manufacture could be revolutionised by the discovery that bacteria can make a key chemical involved in the process, without emitting harmful greenhouse gases

IMAGE

Credit: The Wallace Lab, University of Edinburgh

Nylon manufacture could be revolutionised by the discovery that bacteria can make a key chemical involved in the process, without emitting harmful greenhouse gases.

Scientists have developed a sustainable method of making one of the most valuable industrial chemicals in the world – known as adipic acid – which is a key component of the material.

More than two million tonnes of the versatile fabric – used to make clothing, furniture and parachutes – is produced globally each year, with a market value of around £5 billion.

Industrial production of adipic acid relies on fossil fuels and produces large amounts of nitrous oxide – a greenhouse gas three hundred times more potent than carbon dioxide. A sustainable production method is urgently required to reduce the damage caused to the environment, the team says.

Scientists from the University of Edinburgh altered the genetic code of the common bacteria E.coli in the lab. The modified cells were grown in liquid solutions containing a naturally occurring chemical, called guaiacol, which is the main component of a compound that gives plants their shape.

Following a 24-hour incubation period, the modified bacteria transformed the guaiacol into adipic acid, without producing nitrous oxide.

The environmentally friendly approach could be scaled up to make adipic acid on an industrial scale, researchers say.

The study is published in ACS Synthetic Biology. It was funded by the Carnegie Trust and UK Research and Innovation.

Lead author Jack Suitor, a PhD student in the University of Edinburgh’s School of Biological Sciences, said the team is continually exploring new ways of using bacteria to produce chemicals.

He said: “I am really excited by these results. It is the first time adipic acid has been made directly from guaiacol, which is one of the largest untapped renewable resources on the planet. This could entirely change how nylon is made.”

Dr Stephen Wallace, Principle Investigator of the study, and a UKRI Future Leaders Fellow suggested microbes could help solve many other problems facing society.

He said: “If bacteria can be programmed to help make nylon from plant waste – something that cannot be achieved using traditional chemical methods – we must ask ourselves what else they could do, and where the limits lie. We are all familiar with the use of microbes to ferment food and beer – now we can ferment materials and medicines. The possibilities of this approach to create a sustainable future are staggering.”

###

For further information, please contact: Rhona Crawford, Press and PR Office, 0131 650 2246, [email protected]

Media Contact
Rhona Crawford
[email protected]

Original Source

http://www.ed.ac.uk/news/2020/sustainable-nylon-production-made-possible-by-bact

Related Journal Article

http://dx.doi.org/10.1021/acssynbio.0c00254

Tags: BiochemistryBiologyCell BiologyEcology/EnvironmentMaterialsPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Creating Synthetic Protein-Binding DNA Systems in Cells

January 17, 2026
blank

Chiral Catalysis Powers Rotary Molecular Motors

January 16, 2026

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

January 15, 2026

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    78 shares
    Share 31 Tweet 20
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

BMS794833 Disrupts Macrophage Efferocytosis via MERTK Inhibition

Exploring Lannea schimperi Bark’s Health Benefits

Quantum Computing and Network Models for Wildfire Fuelbreaks

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.