• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Surprising players in acute liver failure point to potential treatment

Bioengineer by Bioengineer
October 27, 2020
in Health
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Gut microbes and host cells jointly contribute to the progression of this mostly incurable disease

IMAGE

Credit: Weizmann Institute of Science

Acute liver failure is a devastating, rapidly progressing disease that results in death in 80% of cases, unless an emergency liver transplant is performed. In the developed world, its leading cause is a substantial overdose of acetaminophen, also known as paracetamol.

In a study published in Nature Medicine, researchers from the labs of Profs. Eran Elinav and Ido Amit in the Immunology Department of the Weizmann Institute of Science have, in using mouse models of acute liver failure, discovered three new subsets of liver cells that orchestrate the development of this condition. The scientists also uncovered signals – from the gut microbiome as well as the diseased liver – that jointly activate these cells, and showed that selectively blocking these signals and depleting the microbiome led to marked improvement in liver function and prolonged survival in mice. An analysis of liver tissue from human patients with acute liver failure revealed a molecular pattern strikingly similar to the one identified in mice in the study, raising hopes that the findings in mice may in the future be translated into a treatment for humans.

Dr. Aleksandra Kolodziejczyk, a postdoctoral fellow in Elinav’s lab, led this project in collaboration with other scientists at the Weizmann Institute of Science and Dr. Amir Shlomai of the Liver Institute, Rabin Medical Center.

Kolodziejczyk and her colleagues began their exploration by creating gene expression profiles of 45,000 individual mouse liver cells, ultimately generating a comprehensive liver cell atlas in conditions of health and acute liver failure. The scientists identified 49 cell subsets, of which three new subsets – among stellate, endothelial and Kupffer cells – became abnormally activated as the acute liver failure progressed in the mice. These previously undescribed cell subsets secreted a large variety of substances that attracted immune cells from outside the liver, which then contributed to its damage. All three new cell subtypes shared a characteristic expression pattern of 77 genes – a pattern controlled by the same regulatory protein, the transcription factor MYC – which suggested that these cells may be activated through a common program.

The researchers suspected the newly uncovered activation pathway could be regulated by signals from the gut microbiome. This makes anatomical sense, as the gastrointestinal tract drains into the liver though a large network of veins, directly exposing the liver to substances produced in the gut and by its microbes. When the scientists depleted the microbiome of the mice by administering wide-spectrum antibiotics, symptoms of liver failure were alleviated. Moreover, when they induced acute liver failure in germ-free mice, which lack a microbiome, the condition was much less severe than in regular mice. Further studies of mice with and without a gut microbiome revealed that during acute liver failure, distinct molecules generated by the microbiome accumulate in the liver, where they activate the MYC protein in the three liver cell subtypes that contribute to liver damage. In the absence of a microbiome, MYC activation was attenuated, leading to reduced liver damage.

Kolodziejczyk then worked out the molecular details of MYC activation. She found that the molecules coming from the microbiome activate the MYC program through surface receptors on the three cell subtypes that she had identified earlier as aggravating the liver failure. She also found that the MYC program was activated in the same manner – that is, through the same receptors on the three cell subtypes – by signals coming from liver cells damaged by paracetamol.

When the mice were genetically depleted of functioning receptors, given drugs that blocked MYC or otherwise had the signals between these receptors and MYC interrupted, they no longer developed acute liver failure and their survival was extended. Gene expression analysis of individual cells showed that in the treated mice, the three newly identified cell subtypes were no longer abnormally activated, and this reduced both the immune cell infiltration and the resultant liver damage.

Finally, the researchers teamed up with Dr. Shlomai to analyze liver samples from patients with acute liver failure and to compare them with samples from healthy liver donors. Those from the patients – but not from healthy donors – were characterized by robust MYC activation that was similar to the one observed in mice. These results raise the possibility that blocking the MYC program by drugs, coupled with microbiome modulation, may prove to be a potential treatment for acute liver failure.

“Our findings provide a first step towards achieving a comprehensive understanding of how the microbiome interacts with the host in contributing to acute liver failure,” Elinav says. “Such knowledge could lead to a new treatment option for this cureless and devastating disorder.”

###

Also taking part in the study were Dr. Sara Federici, Dr. Niv Zmora, Dr. Gayatree Mohapatra, Dr. Mally Dori-Bachash, Shanni Hornstein, Dr. Avner Leshem and Dr. Hagit Shapiro of the Elinav lab; Dr. Tomer Meir Salame of Weizmann’s Life Sciences Core Facilities; Prof. Alon Harmelin of Weizmann’s Veterinary Resources Department; Dr. Debby Reuveni and Dr. Ehud Zigmond of the Tel Aviv Sourasky Medical Center; and Dr. Ana Tobar of the Rabin Medical Center.

Prof. Ido Amit’s research is supported by the Helen and Martin Kimmel Award for Innovative Investigation; the Sagol Institute for Longevity Research; the Kekst Family Institute for Medical Genetics; the Thompson Family Foundation Alzheimer’s Research Fund; the Adelis Foundation; Richard and Jacqui Scheinberg; the Ben B. and Joyce E. Eisenberg Foundation; the Anita James Rosen Foundation; the Lowy Foundation; the Wolfson Family Charitable Trust; the Vainboim Family; Lady Michelle Michels; Rosanne Cohen; Mauricio Gerson; Erika Mogyoros; Thomas Franklin Buchheim; Jeff Pinkner and Maya Iwanaga; the estate of Simon Saretzky; and the estate of Arthur Rath. Prof. Amit is the incumbent of the Eden and Steven Romick Professorial Chair.

Prof. Eran Elinav’s research is supported by the Morris Kahn Institute for Human Immunology; the Pearl Welinsky Merlo Scientific Progress Research Fund; the Hanna and Dr. Ludwik Wallach Cancer Research Fund; the Leona M. and Harry B. Helmsley Charitable Trust; the Adelis Foundation; the Else Kroener Fresenius Foundation; the Lawrence and Sandra Post Family Foundation; Yael and Rami Ungar; the Daniel Morris Trust; the Harold Altman Charitable Trust; the Howard and Nancy Marks Charitable Fund; the European Research Council; the Ben B. and Joyce E. Eisenberg Foundation; the Vainboim Family; Alex Davidoff; the White Rose International Foundation; and the Jeanne and Joseph Nissim Center for Life Sciences Research. Prof. Elinav is the incumbent of the Sir Marc and Lady Tania Feldmann Professorial Chair

The Weizmann Institute of Science in Rehovot, Israel, is one of the world’s top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Media Contact
Yael Edelman
[email protected]

Original Source

https://wis-wander.weizmann.ac.il/life-sciences/surprising-players-acute-liver-failure-point-potential-treatment

Related Journal Article

http://dx.doi.org/10.1038/s41591-020-1102-2

Tags: BacteriologyBioinformaticsCell BiologyInternal MedicineLiverMedicine/HealthMicrobiologyMolecular BiologyToxicology
Share12Tweet8Share2ShareShareShare2

Related Posts

Hidden Childhood Adversities Shape Adult Substance and Mental Health

Hidden Childhood Adversities Shape Adult Substance and Mental Health

August 6, 2025
Decoding Pediatric Behçet’s Disease Complexities

Decoding Pediatric Behçet’s Disease Complexities

August 6, 2025

Forensic Shotgun Pellet Analysis via Dual-Energy CT

August 6, 2025

Could Lithium Hold the Key to Understanding and Treating Alzheimer’s Disease?

August 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    74 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

H. pylori Reduces miR-223 in Neutrophils

Hidden Childhood Adversities Shape Adult Substance and Mental Health

Calcifying Nanoparticles in Hepatic Cysts Linked to Autophagy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.