• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Surprise findings turn up the temperature on the study of vernalization

Bioengineer by Bioengineer
February 15, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Sam Sapin


Researchers have uncovered new evidence about the agriculturally important process of vernalization in a development that could help farmers deal with financially damaging weather fluctuations.

Vernalization is the process by which plants require prolonged exposure to cold temperature before they transition from the vegetative state to flower. For decades it’s been a key focus of research into plant development and crop productivity.

But how vernalization might work under variable temperatures in the field has been unclear, as have some of the underlying molecular controls of the process.

The research carried out by John Innes Centre scientists in collaboration with colleagues in Hungary and France shows that vernalization is influenced by warm conditions as well as cold, and a much wider temperature range than previously thought.

Led by Dr Laura Dixon, the study began as an exploration into how variance in ambient temperatures might influence flowering regulation in winter wheat. But it unexpectedly uncovered an “extreme vernalization response”.

“We have shown that vernalization responds to warmer conditions than those classically associated with vernalizing. Before this study we thought vernalization only happened up to a maximum of about 12°C, but the true temperature is much higher. This information is immediately useful to breeders,” says Dr Dixon.

The researchers used a panel of 98 wheat cultivars and landraces and exposed them to temperatures ranging from 13 to 25 °C in controlled environments.

Normally, once the vernalization process completes, plant growth is accelerated under warm temperatures. But the team identified one cultivar, named Charger, which did not follow this standard response.

Gene expression analysis revealed that the wheat floral activator gene (VRN-A1) was responsible for this trait. Further experiments showed that expression of genes that delay flowering is reactivated in response to high temperatures (of up to 24 °C), demonstrating that vernalization is not only a consequence of how long the plant experiences continuous cold.

This study published in the journal Development highlights complex workings of a genetic network of floral activators and repressors that coordinate a plant’s response to a range of temperature inputs. It also finds that the Charger cultivar is an extreme version of a response to warmer temperatures that may be prevalent in winter wheat cultivars.

The team is now looking to provide diagnostic genetic markers which will allow breeders to track the distinct allele responsible for this warm-temperature vernalization trait. They also hope to use their new knowledge of warm weather interruption to reduce the length of vernalization in the breeding cycle, so that new wheat lines can be generated more quickly.

Dr Dixon explains: “This study highlights that to understand the vernalization response in agriculture we must dissect the process in the field and under variable conditions. The knowledge can be used to develop new wheat cultivars that are more robust to changing temperatures.”

###

The full report: link to paper etc http://dev.biologists.org/content/146/3/dev172684

Background information:

The full study VERNALIZATION1 controls development response of winter wheat under high ambient temperatures, appears in the journal Development.

Collaborators: Centre for Agricultural Research, Hungarian Academy of Sciences. And INRA, France

Pictures/Media and captions:

https://drive.google.com/openid=1agcTO_SYHNsIVxo9yQPJfh2mD4863PbK

Media Contact
Adrian Galvin
[email protected]
160-345-0000

Tags: Agricultural Production/EconomicsAgricultureClimate ChangeEcology/EnvironmentGenesGeneticsMicrobiologyMolecular Biology
Share12Tweet7Share2ShareShareShare1

Related Posts

Emulsification and Gelation in Plant-Based Cream Cheese

Emulsification and Gelation in Plant-Based Cream Cheese

November 3, 2025
Alpha-Synuclein Initiates Early Gene Expression Shifts in Parkinson’s Disease Model

Alpha-Synuclein Initiates Early Gene Expression Shifts in Parkinson’s Disease Model

November 3, 2025

Sudden Burst of Complexity 65 Million Years Ago

November 3, 2025

Alfalfa Cystatin Genes: Stress Response Insights

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Report Charts Scientific Roadmap to Eliminate Firearm Violence by 2040

Nanotyrannus and Tyrannosaurus Coexisted Late Cretaceous

Ring-Opening Linker Boosts HER2-Targeting ADCs Safety

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.