• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, December 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Surge protector: A novel approach to suppressing therapy-induced tumor growth and recurrence

Bioengineer by Bioengineer
January 15, 2019
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

BOSTON – Following up on a groundbreaking 2018 study in which BIDMC’s Dipak Panigrahy, MD, demonstrated that dead and dying cancer cells killed by conventional cancer treatments paradoxically trigger inflammation that promotes tumor growth and metastasis, a new study led by Allison Gartung, PhD, describes a novel approach to suppressing chemotherapy-induced tumor growth in an ovarian cancer model. Gartung and colleagues’ findings were published in published in January in Proceedings of the National Academy of Science (PNAS).

Working in a mouse model of the disease, the team confirmed that chemotherapy-killed ovarian cancer cells induce surrounding immune cells called macrophages to release a surge of chemicals. Together, these chemicals, known as cytokines and lipid mediators, create an environment conducive to tumor growth and survival.

“Conventional cancer therapy is a double-edged sword – the very treatment meant to control cancer is also helping it to survive and grow,” said Gartung, a postdoctoral fellow in BIDMC’s Department of Pathology. “To prevent tumor recurrence after therapy, it is critical to neutralize the inherent tumor-promoting activity of therapy-generated debris.”

Next, the team showed that a newly synthesized anti-inflammatory drug called PTUPB – specifically designed to target the chemical pathways that lead to cytokines and lipid mediators – blocks the debris-stimulated surge of tumor-promoting chemicals by macrophages. In addition, the scientists found that PTUPB prolonged survival in mice bearing ovarian tumors and suppressed debris-stimulated tumor growth.

“The role of these chemotherapy-induced cytokines and lipids is underappreciated and poorly characterized, and ovarian cancer patients may benefit from suppressing their release,” said Panigrahy, Assistant Professor of Pathology and a Scientist at the Cancer Center at BIDMC. “Further research is needed but, our results indicate that PTUPB may compliment conventional cancer therapies by acting as a ‘surge protector’ against cell debris-stimulated tumor growth.”

###

In addition to Gartung and Panigrahy, co-authors include; Vikas P. Sukhatme, Djanira Fernandes, Jaimie Chang, of BIDMC; Jun Yang, Sung Hee Hwang and Bruce D. Hammock of UCD Comprehensive Cancer Center, University of California, Davis; Diane R. Bielenberg, Birgitta A. Schmidt, David Zurakowski, of Boston Children’s Hospital; Sui Hang of Institute for Systems Biology; Mark W. Kieran of Dana Farber Cancer Institute.

This work was supported by grants from the National Cancer Institute (RO1 01CA170549-02, ROCA148633-01A4); NIEHS Superfund Research Program P42 ES004699, NIEHS/RO1 ES002710; Stop and Shop Pediatric Brain Tumor Fund; CJ Buckley Pediatric Brain Tumor Fund; Alex’s Lemonade Stand; Molly’s Magic Wand for Pediatric Brain Tumors; Markoff Foundation Art-In-Giving Foundation; Kamen Foundation; Jared Branfman Sunflowers For Life; Joe Andruzzi Foundation and the Credit Union Kids at Heart.

Media Contact
Jacqueline Mitchell
[email protected]
617-667-7306

Tags: BiochemistryBiologycancerCell BiologyMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Multi-Omics Identifies CYP2B6 as Key in Lung Cancer

December 17, 2025

Blood Markers’ Role in Oral Cancer Prognosis

December 17, 2025

AI Model Predicts Survival, Prioritizes Therapy in RCC

December 16, 2025

ctDNA-Guided Therapy Advances Muscle-Invasive Bladder Cancer

December 15, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    52 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Pilot Extraction of Propolis Bioactives via Subcritical Solvent

Multi-Omics Identifies CYP2B6 as Key in Lung Cancer

Decoding Protein-Coding Genes: A Comparative Analysis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.