• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Suppression of DKK3 protein thwarts pancreatic tumor progression and prolongs survival

Bioengineer by Bioengineer
October 24, 2018
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: MD Anderson Cancer Center

Researchers at The University of Texas MD Anderson Cancer Center have shed new light on why pancreatic tumors are so resistant to therapy. The answer may lie in treating a protein found in the scar-type tissue called stroma which often surrounds the tumors.

The tumor-associated stroma is comprised mostly of pancreatic stellate cells (PSCs) and its density and possibly the cells themselves are thought to prevent current treatments from effectively killing the tumor. Dickkopf-3 (DKK3), is produced by the stromal cells but acts on the neighboring cancer cells to increase their growth, metastasis and resistance to therapy. DKK3 has been identified as a potential target for treatment with a newly developed DKK3-blocking antibody, according to results from a study led by Rosa Hwang, M.D., professor in Surgical Oncology and Breast Surgical Oncology. Findings are published in the Oct. 24 online issue of Science Translational Medicine.

Hwang's lab found DKK3 to be highly expressed in pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, and specifically by PSCs rather than cancer cells, and her team discovered different ways to silence DKK3 from acting on cancer cells as well as immune cells in the tumor microenvironment. The researchers developed an antibody to block the DKK3 molecule in mice, which not only inhibited tumor growth but also significantly prolonged life.

"Pancreatic cancer has a dismal prognosis and it is unclear if its stromal infiltrate contributes to its aggressiveness.We demonstrated that DKK3 is produced by PSCs and is present in the majority of human pancreatic cancer," said Hwang. "DKK3 stimulates cancer growth, metastasis, and resistance to chemotherapy and immunotherapy. Targeting DKK3 in a pancreatic cancer mouse model boosted immune cell infiltration and more than doubled survival."

DKK3 expression and effects on pancreatic cancer

Hwang's team examined DKK3 expression in human pancreatic tumors and found that at least two-thirds of patients had moderate-to-very strong levels of DKK3. Compared to normal controls, DKK3 levels were 4.5 times higher in PDAC.

Due to DKK3's dual effects in promotion of tumor growth and in resistance to therapy, Hwang's results indicate that DKK3 is a therapeutic target as either monotherapy or in combination with immunotherapy or chemotherapy.

"Previous efforts to target pancreatic cancer stroma were directed at broadly eliminating stromal elements," she said. "Our study shows that a more effective strategy may be to inhibit specific tumor-promoting mechanisms attributed to PSCs, such as DKK3."

###

MD Anderson research team members included Liran Zhou, Ph.D.; Hongmei Husted, Ph.D.; Todd Moore, B.S.; Mason Lu, M.D., Ph.D.; and Jeffrey Lee, M.D., all of the Department of Surgical Oncology; Defeng Deng, Ph.D.; Yan Liu, M.D.; Vijaya Ramachandran, Ph.D.; Thirudvengadam Arumugam, Ph.D.; and Craig Logsdon, Ph.D., of the Department of Cancer Biology; Huamin Wang, M.D. and Anirban Maitra, M.B.B.S., of the Department of Pathology; Paul Chiao, Ph.D.; Jianhua Ling, Ph.D.; and Mien-Chie Hung, Ph.D., of the Department of Molecular and Cellular Oncology; and Michael Curran, Ph.D. of the Department of Immunology. The German Cancer Research Center, Heidelberg, Germany, also participated in the study.

The study was funded by the National Institutes of Health (5K08CA138912-5 and P30CA016672); an American Cancer Society Institutional Research grant; the Lustgarten Foundation; and MD Anderson Knowledge Gap Seed Funding.

Media Contact

Ron Gilmore
[email protected]
713-745-1898
@mdandersonnews

http://www.mdanderson.org

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Uncovering the Hidden Complexity of Myeloma: Bone Marrow Mapping Sheds New Light on Blood Cancer

August 18, 2025
blank

Ensuring Precision in SABR-ROC Trial Quality

August 18, 2025

Stapokibart Shows Promise in Treating Severe Uncontrolled Chronic Rhinosinusitis with Nasal Polyps

August 18, 2025

Immune Combo Therapy Boosts Lung Cancer Outcomes

August 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Guaranteeing Optimal Resource Allocation: A Focus on Scientific Advancements

Uncovering the Hidden Complexity of Myeloma: Bone Marrow Mapping Sheds New Light on Blood Cancer

Bee-Stinger-Inspired Microneedles Revolutionize Drug Delivery, Accelerate Healing, and Enable Real-Time Wound Monitoring

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.