• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Superconduction: Why does it have to be so cold?

Bioengineer by Bioengineer
February 20, 2019
in Science
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists at TU Wien have figured out a new way to approach the question why superconductivity only works at extremely low temperatures

IMAGE

Credit: TU Wien


Why does it always have to be so cold? We now know of a whole range of materials that – under certain conditions – conduct electrical current entirely without resistance. We call this phenomenon superconduction. All these materials do nonetheless experience a common problem: they only become superconducting at extremely low temperatures. The search to find theoretical computational methods to represent and understand this fact has been going on for many years. As yet, no one has fully succeeded in finding the solution. However, TU Wien has now developed a new method that enables a significantly better understanding of superconduction.

Many particles, complex computation

“Actually, it’s surprising that superconduction only occurs at extremely low temperatures,” says Professor Karsten Held of the Institute of Solid State Physics at TU Wien. “When you consider the energy released by the electrons involved in superconduction, you would actually expect superconduction to be possible at much higher temperatures as well.”

In response to this conundrum, he and his team set about looking for a better method of representing superconduction theoretically. Dr Motoharu Kitatani is the lead author of a new publication that brings forward significant improvements and enables a more in-depth understanding of high-temperature superconductivity.

It is not possible to understand superconduction by imagining the electrons in the material like tiny spheres following a distinct trajectory like balls on a snooker table. The only way you can explain superconduction is by applying the laws of quantum physics. “The problem is that many particles are involved in the phenomenon of superconduction, all at the same time,” explains Held. “This makes the computations extremely complex.”

The individual electrons in the material cannot be considered as objects that are independent of one another; they need to be treated together. Yet this task is so complex that it would not be possible to solve it accurately, even using the biggest computers in the world.

“However, there are various approximation methods that can help us to represent the complex quantum correlations between the electrons,” according to Held. One of these is the “dynamical mean-field theory” that is ideal for situations where computing the quantum correlations between the electrons is particularly difficult.

Improved representation of interactions

The research group at TU Wien is now presenting an addition to the existing theory that relies on a new ‘Feynman diagram’ calculation. Feynman diagrams – devised by Nobel prize winner Richard Feynman – are a way of representing the interactions between particles. All possible interactions – such as when particles collide, but also the emission or absorption of particles – are represented in diagrams and can be used to make very precise calculations.

Feynman developed this method for use in studying individual particles in a vacuum, however it can also be used to depict complex interactions between particles in solid objects. The problem in solid state physics is that you need to allow for a huge number of Feynman diagrams, because the interaction between the electrons is so intense. “In a method developed by Professor Toschi and myself, we no longer use the Feynman diagrams solely to depict interactions, but also use a complex, time-dependent vertex as a component,” explains Held. “This vertex itself consists of an infinite number of Feynman diagrams, but using a clever trick, it can still be used for calculations on a supercomputer.”

Painstaking detective work

This has created an extended form of the dynamical mean-field-theory that enables a good approximation of the complex quantum interaction of the particles to be calculated. “The exciting thing in terms of physics is that we can show it is actually the time dependence of the vertex that means superconduction is only possible at low temperatures.” Following a great deal of painstaking detective work, Motoharu Kitatani and Professor Held were even able to identify the orthodox Feynman diagram that shows why conventional materials only become superconducting at -200°C and not at room temperature.

In conjunction with experiments currently being carried out at the Institute of Solid State Physics in a working group headed up by Professor Barisic, the new method should make a significant contribution to the better understanding of superconduction and so enable the development of even better superconducting materials. Identifying a material that is also superconducting at room temperature would be a huge breakthrough, and would enable a whole series of revolutionary technological innovations.

###

Contact:

Prof. Karsten Held

Institute for Solid State Physics

TU Wien

Wiedner Hauptstraße 8, 1040 Vienna

T: +43-1-58801-13710

[email protected]

Media Contact
Florian Aigner
[email protected]
43-155-801-41027

Original Source

https://www.tuwien.ac.at/en/news/news_detail/article/126540/

Related Journal Article

http://dx.doi.org/10.1103/PhysRevB.99.041115

Tags: Chemistry/Physics/Materials SciencesMaterialsSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Epithelial Membrane Damage Triggers Allergic Inflammation

Targeting Fibroblast sFRP2: siRNA Therapy for Uterine Scarring

Bispecific CDH17-GUCY2C ADC Targets Colorectal Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.