• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Sun, moon and sea as part of a ‘seismic probe’

Bioengineer by Bioengineer
April 2, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tides and surf can be used for non-destructive analysis of subsurface; study highlighted by American Physical Society

IMAGE

Credit: C. Sens-Schönfelder, GFZ

Anyone who wants to take a look inside the Earth needs a signal that can penetrate rocks, minerals and other opaque material. Seismic waves represent such a signal. If you record them with a seismometer, you can draw conclusions from the recorded data about the state of the subsurface through which the waves have passed. Knowledge of subsurface stress or strain fluctuations is just as important for safety in construction and mining, for example, as it is for monitoring geological processes in volcanoes and fault zones. Now Christoph Sens-Schönfelder from the GFZ German Research Centre for Geosciences in Potsdam and Tom Eulenfeld from the University of Jena have been able to show that the seismic waves excited by the surf, together with the effect of the Earth’s tides on the subsoil, can be used to better understand the properties of the Earth.

Seismic waves not only provide information about the structure of the Earth’s material, but also about the forces acting on it. For example, deformations of the subsurface change the velocity at which a wave travels. In order to draw conclusions about the subsurface forces from the velocity, however, data is required on how the material reacts to deformations under known conditions. Until now, such data have only been available from laboratory experiments, not from the field.

Christoph Sens-Schönfelder and Tom Eulenfeld have now succeeded for the first time in using a single seismometer to measure how sensitively seismic waves react to the deformation of the Earth’s material they propagate in. In order to achieve that, they evaluated the velocity of the seismic noise generated by the surf. They report on this in the journal Physical Review Letters.

Measuring deformations in the Earth’s interior from the surface

“We use two different signals that the environment provides us with naturally,” explains Christoph Sens-Schönfelder. “Due to the tidal effect of the moon and the sun, the universe conducts a permanent deformation experiment with the Earth. The luminaries pull with great regularity on our planet. To observe this pulling, we use the seismic noise in the underground that is generated by the surf.”

The relation investigated by Christoph Sens-Schönfelder and Tom Eulenfeld allows in principle a measurement of the deformations inside the Earth by means of recordings of seismographs on the Earth’s surface. And that without having to drill into the ground.

The data that the two researchers investigated was recorded by the Integrated Plate Boundary Observatory in the Atacama Desert in northern Chile. Improved software was needed to detect even the slightest changes in wave velocity and to combine these changes with the deformation of the subsurface by the tides. Since this tidal deformation is known with high accuracy, it is possible to characterize the subsurface more comprehensively than before.

###

Media Contact
Philipp Hummel
[email protected]

Tags: Earth ScienceGeology/SoilGeophysics/GravityPlanets/MoonsStars/The Sun
Share12Tweet8Share2ShareShareShare2

Related Posts

Durable and Flexible Porous Crystals Showcase Exceptional Gas Sorption Capabilities

Durable and Flexible Porous Crystals Showcase Exceptional Gas Sorption Capabilities

August 25, 2025
Rice’s Martí, Sarlah, and Wang Receive National American Chemical Society Honors

Rice’s Martí, Sarlah, and Wang Receive National American Chemical Society Honors

August 25, 2025

Molecular Compound Enables Photoinduced Double Charge Accumulation

August 25, 2025

Astronomers Chart Stellar ‘Polka Dots’ with NASA’s TESS and Kepler Missions

August 25, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    145 shares
    Share 58 Tweet 36
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling Ferroptosis in Esophageal Cancer Therapy

Impact of Iranian Medicinal Plants on Pancreatic Cancer

One-Year Outcomes for Severe Anorexia Nervosa Treatment

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.