• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Sugars influence cell-to-surface adhesion

Bioengineer by Bioengineer
December 29, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Biotechnologists measure the forces with which algae cells adhere to surfaces and move on them

IMAGE

Credit: Lara Hoepfner

How can cells adhere to surfaces and move on them? This is a question which was investigated by an international team of researchers headed by Prof. Michael Hippler from the University of Münster and Prof. Kaiyao Huang from the Institute of Hydrobiology (Chinese Academy of Sciences, Wuhan, China). The researchers used the green alga Chlamydomonas reinhardtii as their model organism. They manipulated the alga by altering the sugar modifications in proteins on the cell surface. As a result, they were able to alter the cellular surface adhesion, also known as adhesion force. The results have now been published in the open access scientific journal eLife.

Background and methodology

In order to move, the green alga has two thread-like flagella on its cell surface. The alga actually uses these flagella for swimming, but it can also use them to adhere to surfaces and glide along them. The researchers now wanted to find out how movement and adhesion on the part of the alga can be manipulated. “We discovered that proteins on cell surfaces that are involved in this process are modified by certain sugars. If these sugar chains on the proteins are altered, this enables their properties to be altered,” explains Michael Hippler from the Institute of the Biology and Biotechnology of Plants at Münster University. Experts then describe such proteins as being N-glycosylated – a modification in which carbohydrates are docked onto amino groups. Alterations to these sugar modifications by genetically manipulating the algae showed that the adhesion force of the algae and, as a result, any adhesion to surfaces were reduced. At the same time, there was no change in the cells gliding on the surface. The much-reduced force with which the mutants adhere to surfaces is therefore still sufficient, under laboratory conditions, to enable gliding to take place.

In order to study these processes, the researchers first used so-called insertional mutagenesis and the CRISPR/Cas9 method to deactivate genes which encode enzymes relevant to the N-glycosylation process. “The next step was to analyse the sugar modifications of these genetically altered algae strains using mass spectrometry methods,” says Michael Hippler, explaining the team’s approach. In order to visualise the cell-gliding, the researchers used a special method of optical microscopy – total internal reflection fluorescence microscopy (TIRF). This method is frequently used to carry out examinations of structures which are located very close to a surface. For this purpose, a fluorescent protein was expressed in the flagella of the algae in order to make the flagella and the cell-gliding visible.

In order to measure how much force was used in adhering the individual cells to the surface, atomic force microscopy was used and micropipette adhesion measurements were undertaken in collaboration with groups at the University of Liverpool (UK) and the Max Planck Institute of Dynamics and Self-Organization in Göttingen. “This enabled us to verify that adhesion forces in the nanometre range are reduced by altering the protein sugar modifications,” adds Kaiyao Huang.

The two flagella on the green alga resemble for example not only the flagella of sperm but also other movable flagella. These are usually called ‘cilia’ and are also found in the human body – for example in the respiratory tracts. “If we transfer our findings to human cells, sugar-modified proteins could be used to change the interaction of sperm or cilia with all sorts of surfaces,” say Kaiyao Huang and Michael Hippler.

###

Research participants

Besides researchers from the University of Münster, scientists from Berlin’s Humboldt University, the Universities of Wuhan (China) and Liverpool (England) and the Max Planck Institute of Dynamics and Self-Organization in Göttingen contributed to the study.

Media Contact
Prof Michael Hippler
[email protected]

Original Source

https://www.uni-muenster.de/news/view.php?cmdid=11461&lang=en

Related Journal Article

http://dx.doi.org/10.7554/eLife.58805

Tags: BiologyBiotechnologyCell Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Revolutionary Graph Network Enhances Protein Interaction Prediction

October 4, 2025
DOG Gene Family in Wheat Drives Seed Dormancy

DOG Gene Family in Wheat Drives Seed Dormancy

October 4, 2025

Discovery of MrSTP20: Sugar Transporter in Salt Stress

October 4, 2025

SNARE Neofunctionalization Driven by Vacuole Retrieval

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Carers in Australia: Blessings and Challenges Explored

Gut Microbiome and Hormones in Postmenopausal Breast Cancer

Herbal Remedies for Hypertension: Insights from Trinidad

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.