• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Sugars in human mother’s milk are new class of antibacterial agents

Bioengineer by Bioengineer
August 20, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Barbara Cramer/Zack Eagles, Vanderbilt University

Mother's milk, which consists of a complex and continually changing blend of proteins, fats and sugars, helps protect babies against bacterial infections.

In the past, scientists have concentrated their search for the source of its antibacterial properties on the proteins it contains. However, an interdisciplinary team of chemists and doctors at Vanderbilt University have discovered that some of the carbohydrates in human milk not only possess antibacterial properties of their own but also enhance the effectiveness of the antibacterial proteins also present.

"This is the first example of generalized, antimicrobial activity on the part of the carbohydrates in human milk," said Assistant Professor of Chemistry Steven Townsend, who directed the study. "One of the remarkable properties of these compounds is that they are clearly non-toxic, unlike most antibiotics."

The results were presented Aug. 20 at the annual meeting of the American Chemical Society in Washington DC by doctoral student Dorothy Ackerman and published in the ACS Infectious Diseases journal on Jun. 1 in a paper titled, "Human Milk Oligosaccharides Exhibit Antimicrobial and Anti-Biofilm Properties Against Group B. Streptococcus."

The basic motivation for the research was the growing problem of bacterial resistance to antibiotics, which the Center for Disease Control and Prevention estimates causes 23,000 deaths annually.

"We started to look for different methods to defeat infectious bacteria. For inspiration, we turned to one particular bacteria, Group B Strep. We wondered whether its common host, pregnant women, produces compounds that can either weaken or kill strep, which is a leading cause of infections in newborns worldwide," Townsend said.

Instead of searching for proteins in human milk with antimicrobial properties, Townsend and his colleagues turned their attention to the sugars, which are considerably more difficult to study.

"For most of the last century, biochemists have argued that proteins are most important and sugars are an afterthought. Most people have bought into that argument, even though there's no data to support it," Townsend said. "Far less is known about the function of sugars and, as a trained glycoprotein chemist, I wanted to explore their role."

To do so, the researchers collected human milk carbohydrates, also called oligosaccharides, from a number of different donor samples and profiled them with a mass spectrometry technique that can identify thousands of large biomolecules simultaneously. Then they added the compounds to strep cultures and observed the result under the microscope. This showed that not only do some of these oligosaccharides kill the bacteria directly but some also physically break down the biofilms that the bacteria form to protect themselves.

In a pilot study, Townsend's lab collected five samples. They found that the sugars from one sample nearly killed an entire strep colony. In another sample, the sugars were moderately effective while the remaining three samples exhibited a lower level of activity. In a follow-up study, they are testing more than two dozen additional samples. So far, two broke down the bacterial biofilms and killed the bacteria, four broke down the biofilms but did not kill the bacteria and two killed the bacteria without breaking down the biofilms.

"Our results show that these sugars have a one-two punch," said Townsend. "First, they sensitize the target bacteria and then they kill them. Biologist sometimes call this 'synthetic lethality' and there is a major push to develop new antimicrobial drugs with this capability."

By dosing strep cultures with a mixture of milk sugars and antimicrobial peptides from human saliva, the researchers also showed that the sugars' ability to break down biofilms can also enhance the effectiveness of the other antimicrobial agents that breast milk contains.

In follow-up studies the team has also shown that the milk sugars' antimicrobial activity extends to a number of other infectious bacteria, including two of the six "ESKAPE" pathogens that are the leading cause of hospital infections worldwide.

Townsend is collaborating with colleagues in Vanderbilt's Mass Spectrometry Research Center to identify the specific types of carbohydrate molecules responsible for the antibacterial effects they have discovered.

###

Also contributing to the research were School of Medicine Fellow Ryan Doster, Associate Professor of Pediatrics Jörn-Hendrick Weitkamp, Associate Professor of Pathology, Microbiology & Immunology David Aronoff and Assistant Professor of Medicine Jennifer Gaddy.

The research was supported by the Department of Veterans Affairs grant CDA-2 1IK2BX001701, National Institutes of Health grants T32A1007474-20 and 2T32HD060554-06A2, National Center for Research Resources grant UL1 RR024975-01, National Center for Advancing Translational Sciences grant 2 UL1 TR000445-06 and the Vanderbilt Institute of Chemical Biology.

Media Contact

David F Salisbury
[email protected]
615-343-6803
@vanderbiltu

http://news.vanderbilt.edu/research/

Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Method Enhances Accuracy of Right Whale Distribution Models

Innovative Method Enhances Accuracy of Right Whale Distribution Models

September 16, 2025
Humans Form Strong Bonds with Horses Similar to Those with Pets

Humans Form Strong Bonds with Horses Similar to Those with Pets

September 16, 2025

How Brain Rhythms Guide the Mind’s Pathways in Processing Information

September 16, 2025

Close-in-Age Older Brothers Linked to Lower Survival Rates in Sisters, Study Finds

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Stopping Corruption in the Lymph Nodes: A Breakthrough in Immune Health

Delta-Type Glutamate Receptors: Ligand-Gated Ion Channels

Efficient Sulfamethoxazole Degradation with nZVCe/Biochar Composite

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.