• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

SuFEx as a new generation of click chemistry: synthesis and development of linkers

Bioengineer by Bioengineer
July 10, 2023
in Chemistry
Reading Time: 3 mins read
0
Figure 1. (a) New generation of SuFEx click chemistry and (b) diverse SuFEx linkers.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Organosulfur(VI) fluoride compounds display excellent chemical stability, and yet can efficiently realize diverse linkages via the activation of specific conditions. Based on its unique nature, Sharpless, Dong and coworkers introduced SuFEx as a new generation of click reaction in 2014 (Figure 1a). Since then, SuFEx has become an active research area, frequently occuring in chemical biology, drug discovery, and material chemistry.

Figure 1. (a) New generation of SuFEx click chemistry and (b) diverse SuFEx linkers.

Credit: ©Science China Press

Organosulfur(VI) fluoride compounds display excellent chemical stability, and yet can efficiently realize diverse linkages via the activation of specific conditions. Based on its unique nature, Sharpless, Dong and coworkers introduced SuFEx as a new generation of click reaction in 2014 (Figure 1a). Since then, SuFEx has become an active research area, frequently occuring in chemical biology, drug discovery, and material chemistry.

Importantly, a selection of SuFEx linkers has been developed (Figure 1b), among which FSO2-containing molecules (I–IV) occupy a predominant position. Relative to the corresponding chlorides, S(VI) fluorides are not susceptible to hydrolysis and reduction. The reaction of SO2F2 with available phenols and amines affords fluorosulfates (II) and sulfamoyl fluorides (III) respectively. Alternatively, solid “+SO2F” precursors are synthesized with favorable reactivity and chemoselectivity, even accessing the base-sensitive monosubstituted sulfamoyl fluorides. Strategies for the assembly of sulfonyl fluorides (IV) are diverse, which are divided into three bond-breaking modes including S–C bond, S–F bond, and both. Typical routes mainly rely on the Cl-F exchange, and RSO2Cl substrates are obtained directly or in situ. New reaction models involving the “•SO2F” species and the insertion of SO2 were used to forge sulfonyl fluorides, thus skirting unpleasant thiols and enabling variation of attached carbon fragments to be unfettered. Additionally, photocatalysis and electrocatalysis are recently deployed for the synthesis of S(VI)-fluoride compounds in a safe and green manner.

The development of FSO2-bearing linkers has considerably spurred its aza-analogs into SuFEx chemistry. Significantly, an additional handle on the nitrogen is offered, which expediently adjusts the property of S(VI) fluorides. SOF4 (V) as a 3-dimensional SuFEx hub combines with primary amines to construct iminosulfur oxydifluorides (VI). The SOF4-derived difluorides, analogous to SO2F2, can forge the S–O and S–N bonds (VII and VIII) and even extend to the S–C bond (IX) via metal reagents. Other precursors, such as ArS-NPhth and Tr-NSO, are used to access aza-sulfonyl fluorides (IX). The oxidative chlorination-fluorination protocol is still the most common method for sulfonimidoyl fluorides. A notable recent advance is sulfondiimidoyl fluorides (X), which themselves feature two S=N bonds with tremendous potential.  

Despite remarkable progress in the assembly of these SuFEx linkers, the established methods still suffer from several limitations: (1) access to heteroatom-linked S(VI)-fluorides depends on poisonous gases, especially SOF4, impeding their widespread application; (2) expensive oxidative fluoride sources frequently occur in the synthesis of sulfonyl fluorides with poor atom efficiency; (3) assembly of sulfonimidoyl fluorides generally originates from sulfur-containing compounds (notably sulfinamides), which enables complex functional molecules to be inaccessible; (4) chiral SuFEx linkers with the S=N fragment are less explored, and only a few examples are disclosed to access enantioenriched sulfonimidoyl fluorides via optically pure substrates. We believe that the abovementioned hurdles will be addressed in the near future, and safer, more efficient, and modular protocols are established to forge S(VI)–F linkers, thus facilitating the development and application of SuFEx chemistry.

###

See the article:

Advances in the construction of diverse SuFEx linkers

https://doi.org/10.1093/nsr/nwad123



Journal

National Science Review

DOI

10.1093/nsr/nwad123

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Plasma Treatment Enhances Antibacterial Performance of Silica-Based Materials

November 5, 2025
Biodegradable Cesium Nanosalts Trigger Anti-Tumor Immunity by Inducing Pyroptosis and Modulating Metabolism

Biodegradable Cesium Nanosalts Trigger Anti-Tumor Immunity by Inducing Pyroptosis and Modulating Metabolism

November 5, 2025

New Lightning Forecasting Technology Aims to Safeguard Future Aircraft

November 4, 2025

New Research Reveals Light’s Power to Reshape Atom-Thin Semiconductors for Advanced Optical Devices

November 4, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Alzheimer’s Disease Disrupts Brain-to-Fat Tissue Communication, Potentially Aggravating Cardiovascular and Metabolic Health

DGIST Unveils Revolutionary Memristor Wafer Integration Technology, Advancing Brain-Inspired AI Chip Development

Navigating Transition: Care Triad’s Journey to Nursing Homes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.