• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Studying drivers behind cardiac arrhythmias

Bioengineer by Bioengineer
September 17, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Visualizing electrical patterns underlying abnormal heart contractions and deformations

IMAGE

Credit: University Medical Center Göttingen

WASHINGTON, D.C., September 17, 2019 — Despite advances in medical imaging, the mechanisms leading to the irregular contractions of the heart during heart rhythm disorders remain poorly understood.

Research from the University of Göttingen in Germany suggests existing data from ultrasound imaging can be used to work backwards to reconstruct the underlying electrical causes of arrhythmias. The scientists describe the work in Chaos, from AIP Publishing.

“The heart wall is pretty thick, and current imaging can’t see through it,” said author Jan Christoph, a biomedical physicist at the University Medical Center Göttingen. “Cardiologists can only map the surface of the heart by inserting catheters into a patient’s heart, and it’s currently impossible to measure the electric activity deep within and throughout the heart muscle all at once.”

However, to better locate possible origins of heart rhythm disorders, cardiologists need to be able to look deeper into the tissue. To help overcome this obstacle, Christoph and his colleagues tested a computational approach to see if it would be possible to extract information about the electrical activity within the heart without directly observing it but inferring it from the heart’s mechanical deformations. They believe the approach could be combined with ultrasound or MRI imaging.

The researchers made computer models of two systems interacting with each other – one representing a piece of a heart wall with a rhythm disorder and the other representing a virtual heart. In the virtual heart, the electrical activity is carefully adjusted so it starts to deform in the same way as the arrhythmic heart. Similar approaches have been used in computer weather predictions, in which measurement data from weather stations is assimilated by computer models.

By studying the mechanical characteristics of the two heart models, the researchers found they were able to reconstruct the initial electrical wave patterns almost exactly in the arrhythmic heart.

Applied to a heart, this means studying mechanical cardiac behavior — such as the contractions and deformations that characterize arrhythmias — may reveal information about the electrical activity within the heart previously out of reach. “That would give you the hidden electric excitation,” said Christoph.

Though the work has only been tested in computer simulations so far, the researchers anticipate the reconstruction approach can soon be applied when imaging patients. The group will be conducting a preliminary study on the feasibility of the method on patients who suffer from heart rhythm disorders, such as ventricular tachycardia, with medical colleagues in Göttingen and Hamburg.

“We want to image patients as they undergo ablation procedures using 3D ultrasound imaging,” Christoph said. “We then hope we can apply the reconstruction technique to estimate the abnormal electrical patterns throughout the heart.”

###

The article, “Synchronization-based Reconstruction of Electromechanical Wave Dynamics in Elastic Excitable Media,” is authored by Jan Lebert and Jan Christoph. The article will appear in Chaos on September 17, 2019 (DOI: 10.1063/1.5101041). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5101041.

ABOUT THE JOURNAL

Chaos is devoted to increasing the understanding of nonlinear phenomena in all disciplines and describing their manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines. See http://chaos.aip.org.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/1.5101041

Tags: AcousticsBiologyBiomechanics/BiophysicsCardiologyChemistry/Physics/Materials SciencesMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

Estimating Rice Canopy LAI Non-Destructively Across Varieties

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.