• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Neuroscience

Study suggests ways to block hypertension in those with sleep apnea

Bioengineer by Bioengineer
August 16, 2016
in Neuroscience
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Nanduri Prabhakar

Nanduri Prabhakar, PhD, director of the Institute for Integrative Physiology and Center for Systems Biology of Oxygen Sensing at the University of Chicago

Obstructive sleep apnea – a disorder that affects nearly one out of four people between the ages of 30 and 70 – is a common cause of high blood pressure. In the Aug. 17, 2016, issue of the journal Science Signaling, researchers based primarily at the University of Chicago describe the signaling cascade that leads to this form of hypertension and suggest ways to disrupt those signals and prevent elevated blood pressures.

“Our results, using a rodent model, establish a mechanism that is the cause of apnea-associated hypertension,” said study leader Nanduri Prabhakar, PhD, director of the Institute for Integrative Physiology and Center for Systems Biology of Oxygen Sensing at the University of Chicago. “They also offer a novel way to block the process, preventing this form of hypertension and restoring normal blood pressures.”

The connection between sleep apnea and high blood pressure begins in the carotid body, a small cluster of cells located in the carotid arteries, which pass through the right and left sides of the neck. Chemosensory cells in the carotid bodies constantly measure oxygen levels in the blood and use that information to regulate breathing.

When people with sleep apnea periodically slow or stop their breathing during sleep, their blood-oxygen levels plummet. The carotid bodies recognize this deficit and quickly release signals to increase breathing and bring oxygen levels back to normal. These signals, however, can also increase blood pressure, which can lead to strokes during sleep.

“In both central and obstructive sleep apnea, the acute elevations in blood pressure associated with apneic episodes may predispose patients to hemorrhagic stroke, while chronic hypertension increases the risk of heart failure,” the authors wrote. “Thus, controlling hypertension in sleep apnea patients is a major clinical problem.”

So the researchers carefully mapped out the chain of signaling events that began with sleep-disordered breathing and led to the onset of hypertension.

When an episode of apnea causes low blood oxygen levels, the carotid bodies quickly detect the decrease and begin to generate reactive oxygen species (a natural byproduct of the normal metabolism of oxygen). These inactivate heme oxygenase-2, an enzyme that generates carbon monoxide (CO). This leads to an increase in hydrogen sulfide, which stimulates the carotid bodies to send out chemical signals to take in more oxygen.

Unfortunately, those signals also stimulate the sympathetic nervous system and cause blood vessels to constrict, boosting blood pressure. The standard therapies for hypertension caused by constricted vessels “do not work in this form of hypertension,” Prabhakar said.

In the 1960s, when the relationship between the carotid bodies and asthma was being first investigated, researchers tried to treat the disease by surgical removal of the carotid bodies. However, some of those patients developed sleep apnea. Although carotid body resection prevented hypertension, that approach came with serious side effects. Because they lacked the urge to breathe more during exertion, patients were unable to exercise safely, Prabhakar said, adding that “some died in their sleep from extended apneic episodes.”

The authors suggest instead that drugs designed to inhibit the enzyme cystathionine-y-lyase – required for the production of hydrogen sulfide, the signal to increase oxygen intake – could be used to disrupt the cascade of signals leading to apnea-related hypertension.

“A major finding of the present study is that blockade of hydrogen sulfide synthesis is sufficient to prevent carotid body activation and hypertension in intermittent hypoxia-exposed rodents,” the authors note. Treating rats with a cystathionine-y-lyase inhibitor L-propargylglycine (L-PAG) “restored normal carotid body function, sympathetic nerve activity and blood pressure, and blocked hypertensive responses to simulated apneas.”

“Our results,” they conclude, “suggest that inhibiting cystathionine-y-lyase to reduce hydrogen sulfide signaling in the carotid body with more potent inhibitors than L-PAG may be a novel approach to treat hypertension in patients with sleep apnea.”

###

The National Institutes of Health supported this effort. Additional authors were Guoxiang Yuan, Ying-Jie Peng, Shakil Khan, Jayasri Nanduri, Amritha Singh and Ganesh Kumar from the University of Chicago, and Chirag Vasavda, Gregg Semenza and Solomon Snyder of Johns Hopkins University School of Medicine.

Media Contact

John Easton
[email protected]
773-795-5225
@UChicagoMed

http://www.uchospitals.edu

The post Study suggests ways to block hypertension in those with sleep apnea appeared first on Scienmag.

Share23Tweet8Share2ShareShareShare2

Related Posts

blank

Redox biomarker could predict progression of epilepsy

October 5, 2016
blank

Neural membrane’s structural instability may trigger multiple sclerosis

October 5, 2016

Scientists find new path in brain to ease depression

October 5, 2016

Key players responsible for learning and memory formation uncovered

October 3, 2016
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10
  • Sustainability Accelerator Chooses 41 Promising Projects Poised for Rapid Scale-Up

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Macrophage-T Cell Interaction Boosts SLAMF1 in TB Defense

Strawberry Notch 1 Protects Neurons by Regulating Yeats4

Revolutionary AI Tool Requires Minimal Data to Analyze Medical Images

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.