• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, September 22, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Study shows that electronic air cleaning technology can generate unintended pollutants

Bioengineer by Bioengineer
July 16, 2021
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Georgia Institute of Technology

As the Covid-19 pandemic raged, news reports show that sales of electronic air cleaners have surged due to concerns about airborne disease transmission. But a research team at the Georgia Institute of Technology has found that the benefits to indoor air quality of one type of purifying system can be offset by the generation of other pollutants that are harmful to health.

Led by Associate Professor Nga Lee “Sally” Ng in Georgia Tech’s School of Chemical and Biomolecular Engineering and the School of Earth and Atmospheric Sciences, the team evaluated the effect of a hydroxyl radical generator in an office setting. Hydroxyl radicals react with odors and pollutants, decomposing them, and hydroxyl radical generators have been marketed to inactivate pathogens such as coronaviruses.

However, Ng’s study found that in the process of cleaning the air, the hydroxyl radicals generated by the device reacted with volatile organic compounds present in the indoor space. This led to chemical reactions that quickly formed organic acids and secondary organic aerosols that can cause health problems. Secondary organic aerosols is a major component of PM2.5 (particulate matter with a diameter smaller than 2.5 ?m), and exposure to PM2.5 has been associated with cardiopulmonary diseases and millions of deaths per year.

The paper, “Formation of oxidized gases and secondary organic aerosol from a commercial oxidant-generating electronic air cleaner,” is published in the journal Environmental Science and Technology Letters.

While the pandemic has made various types of electronic cleaners increasingly popular, Ng explained that consumers are probably not aware of the secondary chemistry taking place in the air, with the pollutants generated not being directly emitted by the cleaning device itself.

“There are increasing concerns regarding the use of electronic air cleaners as these devices can potentially generate unintended byproducts via oxidation chemistry similar to that in the atmosphere,” Ng said.

Two types of air cleaning technologies are commonly used to remove indoor pollutants such as particles or volatile organic compounds and to inactivate pathogens: mechanical filtration and electronic air cleaners that generate ions, reactive species, or other chemical products such as photocatalytic oxidation, plasma, and oxidant-generating equipment (e.g., ozone, hydroxyl radical), among others.

Ng’s team selected a hydroxyl generator for the study. They measured the oxygenated volatile organic compounds and the chemical composition of particles generated by the device in an office on the Georgia Tech campus.

While previous research reported pollutant formation from various electronic air cleaners (ionizers, plasma systems, photocatalytic systems with ultraviolet lamps, etc.), Ng believes that her team’s study is the first to monitor the chemical composition of secondary pollutants in both gas and particle phases during the operation of an electronic device that dissipates oxidants in a real-world setting.

Advanced instrumentation made Ng’s study possible. Gas-phase organic compounds were measured using a high-resolution time-of-flight chemical ionization mass spectrometer, purchased through a National Science Foundation major instrumentation grant. The study received support from Georgia Tech’s Covid-19 Rapid Response fund.

Ng noted that future studies on air cleaning technology should not be limited to inactivation of viruses or reduction of volatile organic compounds, but should also evaluate potential oxidation chemistry and the formation of unintended harmful gaseous and particulate chemicals.

“More studies need to be conducted on the effects of these devices in a variety of environments,” Ng said.

“Electronic air cleaners greatly rose in prominence because of the pandemic, and now there are a lot of these devices out there. Millions of dollars are being spent on these devices by businesses and schools. The market is huge.

“Our results show that care must be taken when choosing an adequate and appropriate air cleaning technology for a particular environment and task,” she said.

Ng stressed the importance of future studies concerning the unintended effects of electronic purifiers, as these devices are not currently well regulated and do not have testing standards.

“There needs to be more peer-reviewed scientific data on electronic air cleaners,” Ng said. “We hope that additional studies will lead to more government guidelines and regulation.”

###

CITATION: Joo et al., “Formation of oxidized gases and secondary organic aerosol from a commercial oxidant-generating electronic air cleaner.” (Environmental Science & Technology Letters)
https://pubs.acs.org/doi/10.1021/acs.estlett.1c00416

About the Georgia Institute of Technology

The Georgia Institute of Technology, or Georgia Tech, is a top 10 public research university developing leaders who advance technology and improve the human condition.

The Institute offers business, computing, design, engineering, liberal arts, and sciences degrees. Its nearly 40,000 students representing 50 states and 149 countries, study at the main campus in Atlanta, at campuses in France and China, and through distance and online learning.

As a leading technological university, Georgia Tech is an engine of economic development for Georgia, the Southeast, and the nation, conducting more than $1 billion in research annually for government, industry, and society.

Media Contact
Jason Maderer
[email protected]

Original Source

https://www.news.gatech.edu/2021/07/14/study-shows-electronic-air-cleaning-technology-can-generate-unintended-pollutants

Related Journal Article

http://dx.doi.org/10.1021/acs.estlett.1c00416

Tags: Atmospheric ChemistryBiochemistryChemistry/Physics/Materials SciencesPollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

Susana Marcos Lab

AI helps bring clarity to LASIK patients facing cataract surgery

September 21, 2023
Ultra-low radiation cables for rare physics events

Shh! Quiet cables set to help reveal rare physics events

September 21, 2023

Prof. Dr. Stuart Parkin recognized as Clarivate Citation Laureate

September 21, 2023

We could sequester CO2 by “re-greening” arid lands, plant scientists say

September 21, 2023
Please login to join discussion

POPULAR NEWS

  • blank

    Microbe Computers

    58 shares
    Share 23 Tweet 15
  • University of South Florida scientist: Barnacles may help reveal location of lost Malaysia Airlines flight MH370

    46 shares
    Share 18 Tweet 12
  • Lithuanian invention at the forefront of solar technology breakthrough

    41 shares
    Share 16 Tweet 10
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

One-stop implementation from signal detection to processing

Australian research leads to clinical trial for rare women’s cancers

Ochsner offers tuition assistance to aspiring nurses and doctors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 57 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In