• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, January 24, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Study shows pressure induces unusually high electrical conductivity in polyiodide

Bioengineer by Bioengineer
March 19, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Work carried out in tetraethylammonium di-iodine triiodide (TEAI)

Polyiodides exhibit useful electrochemical properties such as charge-carrier transportation, high electrolyte energy density, high redox reaction reversibility and a wide range of electrical conductivity, all depending on the forces exerted by the organic counter ions–chemical pressure. For this reason, polyiodides have been used in technical applications in electronic and electrochemical devices such as flow batteries, fuel cells, dye sensitized solar cells and optical devices.

In this study, researchers led by Prof. Piero Macchi, experimental group leader in MARVEL’s Design and Discovery Project 4 and head of the laboratory of chemical crystallography at the Department of Chemistry and Biochemistry of the University of Bern, and Dr. Nicola Casati, group leader of the Materials Science group at PSI, used powder and single-crystal X-ray diffraction, electrical conductivity, and first principle calculations to investigate the response of one polyiodide, tetraethylammonium di-iodine triiodide (TEAI), to compression achieved by mechanical pressure.

Compared with the chemical pressure, external mechanical pressure affects the crystal inter- and intramolecular landscape more substantially–a huge lattice strain may induce phase transformations and even chemical reactions. Using diamond anvil cells, it is possible to achieve pressure on the order of tens of gigapascals, a pressure that significantly changes the Gibbs energy, increasing internal energy. Similarly large energy changes are not possible through temperature alteration in solids.

Though complementary I3- and I2 units are clearly separated and interact mainly electrostatically at ambient pressure, the researchers found that compression stimulates their approach–theoretical calculations show that the covalent contribution increases when the material is compressed. Ultimately, this leads to the formation of CT chains, and drastically increased conductivity.

These features make TEAI a tunable pressure-sensitive electric switch. Structural studies at high pressure can rationalize the synthesis and search for future organic and hybrid semiconductors based on PI. The study results indicate that solid PI may be used as solid electrolytes in dye-sensitized solar cells, eliminating the need for organic-based gelators and ionic liquids in general.

###

The paper was funded in part by NCCR MARVEL.

Media Contact
Piero Macchi
[email protected]

Related Journal Article

http://nccr-marvel.ch/highlights/2019-03polyiodide
http://dx.doi.org/10.1002/anie.201901178

Tags: Chemistry/Physics/Materials SciencesMaterialsPolymer ChemistrySuperconductors/Semiconductors
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

New Route to Strychnos Alkaloids via Thiophene Cycloadditions

January 23, 2026
Lithium Metal Powers Electrochemical PFAS Reduction Breakthrough

Lithium Metal Powers Electrochemical PFAS Reduction Breakthrough

January 20, 2026

Creating Synthetic Protein-Binding DNA Systems in Cells

January 17, 2026

Chiral Catalysis Powers Rotary Molecular Motors

January 16, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    156 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    80 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    62 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Smart Individuals Mature Early but Reproduce Slowly

Evaluating a Multidisciplinary Follow-Up for Youth Alcohol Abuse

Reevaluating Health Initiatives for Indigenous Mexicans

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.