• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Study shows laboratory developed protein spikes consistent with COVID-19 virus

Bioengineer by Bioengineer
July 6, 2021
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Southampton

A new international study has found that the key properties of the spikes of SARS-CoV-2 virus which causes COVID-19 are consistent with those of several laboratory-developed protein spikes, designed to mimic the infectious virus.

A central component in designing serological tests and vaccines to protect against COVID-19 is the manufacture of protein “spikes”. These recombinant spikes closely mimic those sticking out of surface of the infectious virus and trigger the body’s immune system into action.

Laboratory manufactured spikes are also used for serological testing (also referred to as antibody testing) and as research reagents. The findings show how that viral spike manufactured through different methods in laboratories across the globe are highly similar and provide reassurance that the spike can be robustly manufactured with minimal variations between laboratories.

The spikes on the SARS-CoV-2 virus are coated in sugars, known as glycans, which they use to disguise themselves from the human immune system. The abundance of these glycans has the potential to create significant discrepancies between studies that use different recombinant spikes.

In this new study, published in the journal Biochemistry, the research team studied the glycan coatings on recombinant spikes developed in five laboratories around the world and compared them to those on the spikes of the infectious virus.

“The speed at which scientific community has moved to tackle the COVID-19 pandemic has put considerable pressure on laboratories around the world to validate their findings quickly,” Explained Max Crispin, Professor of Glycobiology at the University of Southampton, who led the study. “Over the last year we have seen vaccines developed around the world at an unprecedented rate and the rapid development, and validation, of recombinant proteins have been fundamental to that success story,” he continued.

In April 2020, Professor Crispin and his team from the University of Southampton mapped the glycan coating of the SARS-CoV-2 spike for the first time. In the present study, they extend their analysis to examine recombinant spike developed in laboratories at the Amsterdam University Medical Centre, Harvard Medical School, the University of Oxford, and the Swiss company ExcellGene. All the different batches of spike protein were shown to mimic key features of the glycosylation of virions analysed at Tsinghua University, China.

The study also used computational methods to examine the protein features that were shaping some of the glycosylation features that were seen across all the samples. Dr. Peter Bond, Senior Principal Investigator at the Bioinformatics Institute of the Agency for Science, Technology and Research (A*STAR), Singapore, who led the computational work said, “Our modelling enabled us to shed light on how the protein influences the structure of the glycans and why the glycosylation was so consistent. This predictive approach could also be of potential value in therapeutics development against new variants or other emerging viruses.”

“The ability to produce mimics of the SARS-CoV-2 spike protein with high fidelity at many different laboratories, all of which recapitulate the glycan signatures of the authentic virus, is of significant benefit for vaccine design, antibody testing and drug discovery” concluded Professor Crispin.

###

Media Contact
Steve Bates
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/acs.biochem.1c00279

Tags: BiologyCell BiologyGeneticsImmunology/Allergies/AsthmaInfectious/Emerging DiseasesMicrobiologyPulmonary/Respiratory MedicineVaccinesVirology
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

One-Carbon Metabolism Marks CD44+ Intestinal Gastric Cancer

August 23, 2025
Prenatal Exposure to Urban Heat Dome Linked to Behavioral Issues in Children

Prenatal Exposure to Urban Heat Dome Linked to Behavioral Issues in Children

August 23, 2025

Harnessing the Power of the Non-Coding Genome to Advance Precision Medicine

August 23, 2025

WTAP Drives DNA Repair via m6A-FOXM1 in Liver Cancer

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Middle Jurassic Bittacidae Species Reveal Wing Diversity

MRI and AI Predict Prostate Cancer Spread

One-Carbon Metabolism Marks CD44+ Intestinal Gastric Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.