• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, August 12, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Study shows HIV speeds up body’s aging processes soon after infection

Bioengineer by Bioengineer
July 1, 2022
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

HIV has an “early and substantial” impact on aging in infected people, accelerating biological changes in the body associated with normal aging within just two to three years of infection, according to a study by UCLA researchers and colleagues.

T-cell infected with HIV

Credit: National Institute of Allergy and Infectious Diseases (NIAID)

HIV has an “early and substantial” impact on aging in infected people, accelerating biological changes in the body associated with normal aging within just two to three years of infection, according to a study by UCLA researchers and colleagues.

The findings suggest that new HIV infection may rapidly cut nearly five years off an individual’s life span relative to an uninfected person.

“Our work demonstrates that even in the early months and years of living with HIV, the virus has already set into motion an accelerated aging process at the DNA level,” said lead author Elizabeth Crabb Breen, a professor emerita at UCLA’s Cousins Center for Psychoneuroimmunology and of psychiatry and biobehavioral sciences at the David Geffen School of Medicine at UCLA. “This emphasizes the critical importance of early HIV diagnosis and an awareness of aging-related problems, as well as the value of preventing HIV infection in the first place.”

The study is published today in the peer-reviewed journal iScience.

Previous research has suggested that HIV and antiretroviral therapies used to keep the infection under control are associated with an earlier onset of age-related conditions typically associated with aging, such as heart and kidney disease, frailty, and cognitive difficulties.

The research team analyzed stored blood samples from 102 men collected six months or less before they became infected with HIV and again two to three years after infection. They compared these with matching samples from 102 non-infected men of the same age taken over the same time period. The authors say this study is the first to match infected and non-infected people in this way. All the men were participants in the Multicenter AIDS Cohort Study, an ongoing nationwide study initiated in 1984.

The researchers focused on how HIV affects epigenetic DNA methylation, a process cells use to turn genes on or off in the course of normal physiological changes. Epigenetic changes are those made in response to the influence of environment, people’s behaviors or other outside factors — such as disease — that affect how genes behave without changing the genes themselves.

The team examined five epigenetic measures of aging. Four of them are what are known as epigenetic “clocks,” each of which uses a slightly different approach to estimate biological age acceleration in years, relative to chronologic age. The fifth measure assessed the length of telomeres, the protective cap-like ends of chromosomes that become progressively shorter with age as cells divide, until they become so short that division is no longer possible.

HIV-infected individuals showed significant age acceleration in each of the four epigenetic clock measurements — ranging from 1.9 to 4.8 years — as well as telomere shortening over the period beginning just before infection and ending two to three years after, in the absence of highly active antiretroviral treatment. Similar age acceleration was not seen in the non-infected participants over the same time interval.

“Our access to rare, well-characterized samples allowed us to design this study in a way that leaves little doubt about the role of HIV in eliciting biological signatures of early aging,” said senior author Beth Jamieson, a professor in the division of hematology and oncology at the Geffen School. “Our long-term goal is to determine whether we can use any of these signatures to predict whether an individual is at increased risk for specific aging-related disease outcomes, thus exposing new targets for intervention therapeutics.”

The researchers noted some limitations to the study. It included only men, so results may not be applicable to women. In addition, the number of non-white participants was small, and the sample size was insufficient to take into consideration later effects of highly active antiretroviral treatment or to predict clinical outcomes.

There is still no consensus on what constitutes normal aging or how to define it, the researchers wrote.

The Multicenter AIDS Cohort Study, or MACS, is a large-scale research project that uses demographic factors, habits, disease history and sexual history among men who have sex with men to examine the natural and treated history of HIV infection and AIDS. It is one of the few cohort studies in the world to have biological samples available both before and after documented HIV infection in the same individuals. In 2019, MACS was combined with the Women’s Interagency HIV Study to form the MACS/WIHS Combined Cohort Study, or MWCCS.

This work was supported by grants from the National Institutes of Health National Institute on Aging (R01 AG052340, R01 AG030327) and National Heart, Lung and Blood Institute (U01-HL146333), and the Susan G. Komen Career Catalyst Award (CCR16380478).

Additional study co-authors are Dr. Mary Sehl, Roger Shih, Peter Langfelder, Steve Horvath, Otoniel Martínez-Maza and Christina Ramirez of UCLA; Ruibin Wang, Jay Bream and Priya Duggal of Johns Hopkins University; Jeremy Martinson of the University of Pittsburgh; and Dr. Steven Wolinsky of Northwestern University.



Journal

iScience

DOI

10.1016/j.isci.2022.104488

Method of Research

Randomized controlled/clinical trial

Subject of Research

People

Article Title

Accelerated aging with HIV begins at the time of initial HIV infection

Article Publication Date

30-Jun-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Co-Cu alloy fabricated from metal-organic framework

Researchers fabricate cobalt copper catalysts for methane on metal-organic framework Contributes to goal of methane production from carbon dioxide emissions

August 12, 2022
Raj Gaji.

Virginia Tech veterinary college gets funding for research into parasite found in cats

August 12, 2022

China claims new world record for strongest steady magnetic field

August 12, 2022

SDGs Design International Awards 2022: Change the future of education with design

August 12, 2022

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VirologyWeaponryVaccineWeather/StormsUrbanizationVaccinesUrogenital SystemViolence/CriminalsVehiclesUniversity of WashingtonVirusZoology/Veterinary Science

Recent Posts

  • A fresh look into grasslands as carbon sink
  • Researchers fabricate cobalt copper catalysts for methane on metal-organic framework Contributes to goal of methane production from carbon dioxide emissions
  • Virginia Tech veterinary college gets funding for research into parasite found in cats
  • China claims new world record for strongest steady magnetic field
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In