• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, January 3, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Study shows combined liver-cytokine humanization rescues circulating red blood cells

Bioengineer by Bioengineer
March 5, 2021
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Yale Cancer Center

In a new study by the Yale Department of Immunobiology and Yale Cancer Center, researchers report combined liver and growth factor humanization enhances human red blood cell production and survival in circulation the immunodeficient murine host. The discovery could help in the development of treatments of life-threatening blood disorders, such as myelodysplastic syndrome, and diseases afflicting red blood cells, including sickle cell disease and malaria. The study is published online today in the journal Science.

“Red blood cell diseases, such as thalassemia and sickle cell disease involve approximately 5% of the population worldwide,” said Yuanbin Song, MD, adjunct Assistant Professor of Medicine (Hematology) at Yale Cancer Center and co-lead author of the study. “Our findings highlight the unique potential of this model in studies of diseases that intricately link red blood cells and the liver, such as malaria.”

“MISTRG” mice were developed in the Yale laboratory of Richard Flavell, PhD, Sterling Professor of Immunobiology at Yale University School of Medicine and Yale Cancer Center and co-senior author of the study to have human growth factors and a human-like immune system. Analysis of the fate of human red cells in MISTRG mice revealed that the mouse liver represents one of the major sites of red blood cell sequestration and destruction. Deletion of the fumarylacetoacetate hydrolase (Fah) gene in MISTRG mice allowed replacement of mouse with human hepatocytes and rescue of human red blood cells in circulation.

Human red blood cells, one of the most common cell types in the body, have been under intense genetic selection throughout human evolution, the damaging consequences of which place a heavy burden on many human populations and healthcare systems.

“This is the first xenotransplantation model with circulating human red cells and it will open novel avenues for the study of disease pathophysiological mechanisms and for preclinical testing of treatments for many diseases, including myelodysplasia, bone marrow failure, sickle cell disease, and others,” said Stephanie Halene, MD, PhD, Associate Professor of Medicine (Hematology), Chief of Hematology at Yale Cancer Center and Smilow Cancer Hospital and co-senior author of the study.

###

This work was supported by the Bill and Melinda Gates Foundation, the Howard Hughes Medical Institute, The Frederick A. DeLuca Foundation, the National Institutes of Health.

Co-lead authors for the study are Rana Gbyli, MSc, from Yale, and Liang Shan, PhD, from Washington University School of Medicine. Contributing authors include Wei Liu, PhD, Till Strowig, PhD, Amisha Patel, MSc, Xiaoying Fu, MD, Xiaman Wang, MD, Mina L. Xu, MD, Yimeng Gao, PhD, Ashley Qin, Emanuela M. Bruscia, PhD, Toma Tebaldi, PhD, Giulia Biancon, PhD, Padmavathi Mamillapalli. MSc, David Urbonas, Elizabeth Eynon, PhD, David G. Gonzalez, PhD, Jie Chen, PhD, Diane S. Krause, MD, PhD and Jonathan Alderman, PhD.

About Yale Cancer Center and Smilow Cancer Hospital

Yale Cancer Center (YCC) is one of only 51 National Cancer Institute-designated comprehensive cancer centers in the nation and the only such center in Connecticut. Cancer treatment for patients is available at Smilow Cancer Hospital through 13 multidisciplinary teams and at 15 Smilow Cancer Hospital Care Centers in Connecticut and Rhode Island. Comprehensive cancer centers play a vital role in the advancement of the NCI’s goal of reducing morbidity and mortality from cancer through scientific research, cancer prevention, and innovative cancer treatment.

Media Contact
Anne Doerr
[email protected]

Related Journal Article

http://dx.doi.org/10.1126/science.abe2485

Tags: cancerMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Chronic Kidney Disease: Ectopic Parathyroid Adenoma Case

January 3, 2026

Supporting LGBTQIA+ Communities in Viral Disease Prevention

January 3, 2026

Engineered Co-Signaling Receptors Enhance T Cell Precision

January 3, 2026

Non-Coding RNAs: Impact on Lipid Metabolism and Atherosclerosis

January 3, 2026
Please login to join discussion

POPULAR NEWS

  • blank

    PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    126 shares
    Share 50 Tweet 32
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    52 shares
    Share 21 Tweet 13
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Chronic Kidney Disease: Ectopic Parathyroid Adenoma Case

Genomic Analysis Unveils Growth Traits in Qinchuan Pigs

Self-Buffered Barium Titanate Boosts Electro-Optic Modulators

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.