• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Study sheds light on mechanism of liposome accumulation in tumors

Bioengineer by Bioengineer
July 8, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CU Cancer Center researcher says results could impact how we diagnose, monitor, and treat tumors with liposomes.

IMAGE

Credit: CU Cancer Center

The new study, titled “Liposomal Extravasation and Accumulation in Tumors as Studied by Fluorescence Microscopy and Imaging Depend on the Fluorescent Label,” was published on July 1, 2021, in the prestigious journal of the American Chemical Society, ACS Nano.

Liposomes, a type of nanoparticle, are tiny, fat-soluble vesicles (small, fluid-filled sacs) made from lipids, or fats. They are mainly used to deliver cancer-fighting drugs to tumors, since liposomes are not water soluble and can protect some drugs against breaking down in the body.

Comparing fluorescent labels on liposomes for enhanced tumor imaging

In the new study, Simberg and his collaborator Irina Balyasnikova, PhD, from the Department of Neurological Surgery at Northwestern University, wanted to determine whether the accumulation of liposomes in tumors depends on the type of fluorescent label used.

“It’s very important for the liposome to get out to the tumor blood vessels in order to reach tumor cells and other cells in the microenvironment. So, we asked whether liposome accumulation in tumors depends on which fluorescent label you use,” Simberg explains.

“It’s the first finding of its kind, showing that different lipids have different abilities to accumulate in tumors.” – Dmitri Simberg, PhD

To accomplish this, they made liposomes containing two different classes of fluorescent lipids in the same liposome: indocarbocyanine lipids (ICLs) and fluorescent phospholipids (FPLs). Then they injected them into breast cancer and brain cancer mouse models and used fluorescent microscopy and imaging to compare how much of each label accumulated in the tumors.

Both types of fluorescent labels initially accumulated in the tumor blood vessels. However, over time, the ICLs continued to accumulate, spreading over a significantly larger tumor area and reaching immune and tumor cells, while the FPLs quickly degraded and disappeared from the tumors.

“What we found is that even when injected into the same liposome, ICLs showed remarkable accumulation and extravasation (infiltrating the tumors), while FPLs, though a very similar type of fluorescent group, did not show much extravasation and essentially disappeared,” Simberg says.

“It’s the first finding of its kind, showing that different lipids have different abilities to accumulate in tumors,” he adds.

Results could lead to improved liposomal drug delivery

The team’s findings open the door to improved cancer drug-delivery systems.

“There is a lot of interest in using lipids as a kind of shuttle to get the drugs into tumors,” Simberg says. “It’s an exciting opportunity to enhance drug delivery in different tumors, particularly glioma, a type of brain tumor that’s especially difficult to penetrate.”

Although a lot of labs make liposomes and nanoparticles, there has not been much mechanistic understanding of exactly how they interact with tumors and how they cross the endothelial barrier. “We’re really advocating for studies that offer a deeper mechanistic understanding of how these drug-delivery systems work,” Simberg says.

Simberg says the most impactful part of this paper and his lab’s ongoing research is its focus on understanding the mechanics and structure of lipids that determine the efficiency of tumor accumulation.

The next step in the team’s research will be studies to try additional fluorescent lipids. “In this paper, we compared two lipid types, but we want to expand on that to build a large library of fluorescent lipids and use the most efficient ones to deliver anticancer drugs, eventually testing them for therapeutic efficacy in glioma and other tumor models,” Simberg says.

Media Contact
Valerie Gleaton
[email protected]

Original Source

https://news.cuanschutz.edu/cancer-center/liposome-accumulation-in-tumors

Related Journal Article

http://dx.doi.org/10.1021/acsnano.1c02982

Tags: cancerChemistry/Physics/Materials SciencesDiagnosticsMedicine/HealthNanotechnology/MicromachinesneurobiologyPharmaceutical ChemistryPharmaceutical SciencePharmaceutical Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Surprisingly Elevated Levels of Forever Chemicals Discovered in Deceased Sea Otters

Surprisingly Elevated Levels of Forever Chemicals Discovered in Deceased Sea Otters

November 4, 2025
Next-Generation Satellite Mega-Constellations Empowered by Advanced Laser Links

Next-Generation Satellite Mega-Constellations Empowered by Advanced Laser Links

November 3, 2025

Breakthrough “Self-Tuning” Film Sets Stage for Next-Generation Wireless and Radar Technologies

November 3, 2025

From Shielding to Speed: Scientists Reveal Hidden Chemistry Powering Record-Breaking Sodium-Chlorine Batteries

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insights into Drug-Facilitated Sexual Assault Cases

Pest Dynamics and Climate: Sustainable Solutions for Kagera Sugar

Globalizing Vignette Learning with Language Models

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.