• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Study reveals how brain injury can lead to post-traumatic stress disorder

Bioengineer by Bioengineer
November 4, 2019
in Health
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UCLA team finds that the brain processes fear differently after injury

IMAGE

Credit: Reed Hutchinson/UCLA

Post-traumatic stress disorder in U.S. military members frequently follows a concussion-like brain injury. Until now, it has been unclear why. A UCLA team of psychologists and neurologists reports that a traumatic brain injury causes changes in a brain region called the amygdala; and the brain processes fear differently after such an injury.

“Is one causing the other, and how does that occur?” asked senior author Michael Fanselow, who holds the Staglin Family Chair in Psychology at UCLA and is the director of UCLA’s Staglin Music Festival Center for Brain and Behavioral Health. “We’re learning.”

Two groups of rats were studied. Through surgery, a concussion-like brain injury was produced in 19 of the rats. Sixteen other rats — a control group — also had the surgery, but did not sustain a brain injury. All of the rats were then exposed to a low level of noise, followed by a series of moderate, brief foot shocks. The foot shocks were frightening to the rats, but not very painful, Fanselow said. Because the rats learned to associate the noise with the shock, they became afraid of the noise.

Rats tend to stand still when they experience fear. When they recall a frightening memory, they freeze. Their heart rate and blood pressure go up — and the stronger the memory, the more they freeze, Fanselow said. On the experiment’s third day, the researchers again exposed the rats to the same place where they had been shocked, but did not give them any additional shocks, and studied their reactions.

The rats in the control group did freeze, but the rats that received the brain injury froze for a much longer time. The researchers discovered that even without receiving a foot shock, the rats that had a brain injury showed a fear response to the noise.

“Sensitivity to noise is a common symptom after concussion, which suggested to us that this might partly explain why fear reactions to certain stimuli are increased after brain injury,” said Ann Hoffman, a UCLA researcher in psychology and lead author of the research, which is published in the journal Scientific Reports.

“It’s almost as if the white noise acted like the shock,” Fanselow said. “The noise itself became scary to them, even though it wasn’t much noise. They treated it almost like a shock.”

The researchers studied the amygdala, which is known to be crucial in learning fear. People with anxiety disorders have increased activity in the amygdala, and PTSD has been linked to increased activity in the amygdala.

The amygdala is made up of neurons, and a rat’s amygdala has about 60,000. The researchers discovered that five times as many neurons in the amygdala were active during the white noise in the rats with the brain injury than in the control group, Hoffman said.

The amygdala listens to other brain areas that provide it with information. “The amygdala makes a decision whether a situation is frightening, and when it decides a situation is frightening, it generates a fear response,” Fanselow said.

Another new discovery the researchers report is that after the traumatic brain injury, the brain processes sounds from a more primitive part of the brain — the thalamus — than from a more sophisticated, highly evolved area of the brain — the auditory cortex. The thalamus provides a more simplistic, crude representation of sound than the auditory cortex. About four times as many neurons were active in a network from the thalamus to the amygdala in the rats with the injury than in the control group rats, Hoffman said.

The study raises the question of whether it is possible to get the brain’s amygdala back to normal following a concussion-like injury, perhaps through behavioral therapy or a pharmaceutical. If so, that could benefit members of the military, as well as civilians who have had serious brain injuries, Fanselow said. He and his team will continue their research in an effort to answer this question.

###

Co-authors are David Hovda, a professor of neurosurgery at the David Geffen School of Medicine at UCLA and director of UCLA’s Brain Injury Research Center; Christopher Giza, director of the UCLA Steve Tisch BrainSPORT program and professor of neurosurgery and pediatrics at the Geffen School of Medicine; and Jamie Lam, a UCLA psychology undergraduate.

The research was funded by the National Institute of Mental Health, a UCLA Depression Grand Challenge Fellowship Fund, Staglin Center for Brain and Behavioral Health, and UCLA Brain Injury Research Center.

The Staglin Family Music Festival Center for Brain and Behavioral Health is a research center at UCLA dedicated to increasing understanding of the brain and learning how an unhealthy brain can recover when malfunctions occur.

Fanselow’s research addresses fear, memory and anxiety disorders, including how traumatic memories lead to post-traumatic stress disorder, anxiety disorders and depression. He studies how fear works in the brain using rats and mice, whose fear systems work in very similar ways to that of humans.

Media Contact
Stuart Wolpert
[email protected]
310-206-0511

Related Journal Article

http://dx.doi.org/10.1038/s41598-019-50312-y

Tags: Medicine/HealthMental HealthneurobiologyTrauma/Injury
Share12Tweet8Share2ShareShareShare2

Related Posts

New Malawi Study Finds Breathlessness Significantly Raises Long-Term Mortality Risk

September 11, 2025

Meta-analysis reveals parent-focused programs fall short in preventing toddler obesity; researchers urge new strategies for childhood obesity prevention

September 11, 2025

Study Finds Digital Alzheimer’s Resources Still Limited for Latinos and Hispanics in Los Angeles Years After COVID-19

September 11, 2025

Global Decline in Chronic Disease Deaths Slows, New Study Reveals

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    62 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Amino Acids Stabilize Proteins and Colloids

New Malawi Study Finds Breathlessness Significantly Raises Long-Term Mortality Risk

Global Decline in Chronic Disease Deaths Continues, but Progress Shows Signs of Slowing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.