• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Study reveals giant store of global soil carbon

Bioengineer by Bioengineer
April 11, 2024
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Soil carbon usually refers only to the organic matter component of soils, known as soil organic carbon (SOC). However, soil carbon also has an inorganic component, known as soil inorganic carbon (SIC). Solid SIC, often calcium carbonate, tends to accumulate more in arid regions with infertile soils, which has led many to believe it is not important.

A soil riches in both organic carbon and inorganic carbon in the Qilian Mountains.

Credit: ZHANG Ganlin

Soil carbon usually refers only to the organic matter component of soils, known as soil organic carbon (SOC). However, soil carbon also has an inorganic component, known as soil inorganic carbon (SIC). Solid SIC, often calcium carbonate, tends to accumulate more in arid regions with infertile soils, which has led many to believe it is not important.

In a study published in Science, researchers led by Prof. HUANG Yuanyuan from the Institute of Geographic Sciences and Natural Resources Research of the Chinese Academy of Sciences (CAS) and Prof. ZHANG Ganlin from the Institute of Soil Science of CAS, together with collaborators, have quantified the global store of SIC, challenging this long-held view.

The researchers found a whopping 2,305 billion tons of carbon stored as SIC in the top two meters of soil worldwide, which is more than five times the carbon found in all of the world’s vegetation combined. This hidden pool of soil carbon could be key to understanding how carbon moves around the globe.

“But here’s the thing: This huge carbon pool is vulnerable to changes in the environment, especially soil acidification. Acids dissolve calcium carbonate and remove it either as carbon dioxide gas or directly into the water,” said Prof. HUANG.

“Many regions in countries like China and India are experiencing soil acidification due to industrial activities and intense farming. Without remedial actions and better soil practices, the world is likely to face a disturbance of SIC in the next thirty years,” she added.

Disturbances to SIC accumulated over Earth’s history have a profound impact on soil health. This disruption compromises the soil’s ability to neutralize acidity, regulate nutrient levels, foster plant growth, and stabilize organic carbon. Essentially, SIC plays a critical dual role in storing carbon and supporting ecosystem functions that depend on it.

The researchers revealed that approximately 1.13 billion tons of inorganic carbon are lost from soils to inland waters each year. This loss has profound but often overlooked implications for carbon transport between the land, atmosphere, freshwater, and ocean.

While society has recognized the importance of soils as a fundamental part of nature-based solutions to combat climate change, much of the focus has been on SOC. It is now clear that inorganic carbon deserves equal attention.

This study underscores the urgency of incorporating inorganic carbon into climate change mitigation strategies as an additional lever for maintaining and enhancing carbon sequestration. International programs such as the “4 per mille initiative,” which aims to increase (mostly) SOC by 0.4% annually, should also consider the critical role of inorganic carbon in achieving sustainable soil management and climate mitigation goals.

By broadening the understanding of soil carbon dynamics to include both organic and inorganic carbon, the researchers hope to develop more effective strategies for maintaining soil health, enhancing ecosystem services, and mitigating climate change.



Journal

Science

DOI

10.1126/science.adi7918

Article Title

Size, distribution, and vulnerability of the global soil inorganic carbon

Article Publication Date

12-Apr-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Flame Synthesis Creates Custom High-Entropy Metal Nanomaterials

August 2, 2025
Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

August 1, 2025

Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

August 1, 2025

5 Innovations Securing Water Sources and Ensuring Availability

August 1, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    44 shares
    Share 18 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Feasibility of Range-Compensated Proton Arc Therapy

Fermentable Carbs and Metformin Boost Prediabetes Control

TLR4 and ILC2 Drive Persistent Airway Type 2 Immunity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.