• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Study of Fe2+ ions contributes to further understanding of magnetoelectric coupling

Bioengineer by Bioengineer
September 6, 2025
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A paper by Kazan Federal University saw light in Journal of Physics: Condensed Matter

The researchers developed a microscopic theory of magnetoelectric effect involved Fe2+ and Cr3+ spins. They found two effective mechanisms: the single-ion which demands at least a short-range order of Fe spins (spin-liquid or spin-glass, for instance), and the two-ions mechanism, where the canting between Fe and Cr spins is required. Both reproduce the existing experimental data on the electric polarization measurements by the order of the magnitude and the optical absorption spectrum.

Multiferroics are fascinating multifunctional materials which have a wide range of applications in electronics and spintronics, such as actuators, new types of non-volatile energy efficient memory, electric valves driven by magnetic field. etc. Putting this simply, we can magnetize the medium using electric field and vice versa. Magnetoelectric coupling depends on many competing interactions, and the theory is still unclear. The paper provides a method of calculations of the magnetoelectric and electron-deformation coupling parameters for 3D ions. The latter is also used to calculate magnetostriction, which is important for building sensors (like sonars) and actuators.

One of the important consequences is that the magnetic anisotropy can maintain not only the magnetic “memory”, but also the electric “memory” of the material. The spin structure must have no inversion symmetry to maintain the electric polarization in the ground state. Also, the interplay of electric and magnetic domains may have a significant impact on electric polarization. To solve these issues, it is necessary to study the magnetic subsystem more accurate as well, which is unclear due to the lack of the experimental data and the complexity of the compound.

###

Media Contact
Yury Nurmeev
[email protected]

Original Source

https://eng.kpfu.ru/novosti/study-of-fe2-ions-contributes-to-further-understanding-of-magnetoelectric-coupling/

Related Journal Article

http://dx.doi.org/10.1088/1361-648X/abe730

Tags: Chemistry/Physics/Materials SciencesElectromagnetics
Share12Tweet8Share2ShareShareShare2

Related Posts

Mental Health Challenges in Methadone Treatment Patients

December 19, 2025
Sunflower Oil Boosts Immunity in Malnourished Bangladeshi Kids

Sunflower Oil Boosts Immunity in Malnourished Bangladeshi Kids

December 19, 2025

Mapping Molecular Differences in Sebaceous Tumors

December 19, 2025

Zinc Oxide-Carbon Nanotube Composites: Photocatalytic Insights

December 19, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mental Health Challenges in Methadone Treatment Patients

Sunflower Oil Boosts Immunity in Malnourished Bangladeshi Kids

Mapping Molecular Differences in Sebaceous Tumors

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.