• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Study of cardiac muscles in flies might help you keep your heart young

Bioengineer by Bioengineer
January 7, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Hua Bai


AMES, Iowa – Researchers may have discovered a way to turn back the clock on aging heart muscles in fruit flies, a development that could lead to new therapies for older humans with heart disease.

Hua Bai, an assistant professor of genetics, development and cell biology at Iowa State University, led a study, published recently in the academic journal Autophagy, that explores the genetic mechanism that causes fly cardiac muscles to deteriorate with age. Bai said the research team restored much of the cardiac function in middle-aged flies, which experience many of the same heart maladies as middle-aged humans.

The researchers’ approach starts with autophagy, a cellular “cleanup process” that removes and recycles damaged proteins and organelles. The autophagy process slows with age, which can lead to the weakening of cardiac muscles. Bai’s research team looked at a key genetic pathway conserved in virtually all organisms on Earth related to autophagy that balances organism growth with nutrient intake. This pathway, called mechanistic target of rapamycin (or mTOR), has long been linked to tissue aging, Bai said. One of two complexes that underlie the mTOR pathway, referred to as mTORC2, decreases with age as autophagy declines. But the researchers found that transgenically boosting mTORC2 strengthens heart muscles of older fruit flies.

“Boosting the complex almost fully restored heart function,” Bai said.

Implications for treatment in humans

The discovery that enhancing mTORC2 slows the decline of the critical autophagy process could have big implications for how doctors treat patients with heart disease, one of the leading causes of the death in the United States. While flies and humans might seem to be worlds apart evolutionarily, Bai said the two species’ hearts age in a similar fashion. By middle age, cardiac muscles in both species tend to contract with less strength and regularity.

“The fly model can be useful for developing drug target discoveries that could have a big impact on human health,” Bai said.

The researchers arrived at their conclusions after conducting thousands of video recordings on cardiac muscles in fruit flies of various ages. High-resolution, high-speed cameras measured the activity of the flies’ cardiac muscles. The experiments showed that boosting mTORC2 could restore a five-to-six-week-old fly’s heart function to that of a fly between one and two weeks old. That’s like restoring a middle-aged heart to how it functioned during young adulthood, Bai said.

Because flies live only between two and three months, it’s much easier for scientists to study aging and longevity in flies than in more long-lived species, he said. And the ability to manipulate the fly genome also makes them ideal for genetic study and a common model organism, he said.

###

Media Contact
Fred Love
[email protected]
515-294-0704

Original Source

https://www.news.iastate.edu/news/2020/01/07/cardiacmuscleflies

Related Journal Article

http://dx.doi.org/10.1080/15548627.2019.1704117

Tags: AgingBiologyCardiologyCell BiologyGene TherapyGenesGeneticsMedicine/HealthMortality/Longevity
Share12Tweet8Share2ShareShareShare2

Related Posts

Nicotine Dependence Linked to Health Behaviors in Korean Smokers

September 12, 2025

Salvia Spinosa’s Antimicrobial Effect on Enterococcus faecalis

September 12, 2025

Choosing Wisely: A Challenge in Clinical Reasoning

September 12, 2025

Improved Detection of FMR1 CGG Repeats via Novel Assay

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nicotine Dependence Linked to Health Behaviors in Korean Smokers

Novel V2O5/ZnO Nanocomposite Electrodes for Energy Storage

Evaluating Energy Digestibility in Quail Feed Ingredients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.