• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Study in mice uncovers an unknown pathway for breast cancer tumors to recur

Bioengineer by Bioengineer
April 25, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The finding suggests immune cells could be targeted using existing therapies

IMAGE

Credit: Duke Health

DURHAM, N.C. — For many women who thought they had beaten breast cancer, the news that it has roared back years later comes as an especially cruel diagnosis with no clear answers for why or how it recurs.

Now a team of Duke Cancer Institute researchers has filled in some critically unknown details that could lead to potential strategies to halt the process.

Experimenting in mice, the researchers tracked a series of events that enable a small reservoir of treatment-resistant cancer cells to awake from dormancy, grow and spread. The findings appear online in eLife.

“These are the cells that are left over following therapy, and we haven’t known much about them because we can’t see them. There are too few of them to show up in mammography or PET scans,” said senior author James V. Alvarez, Ph.D., assistant professor in Duke’s Department of Pharmacology & Cancer Biology.

“But using mouse models that replicate recurrent HER2-positive breast cancers, which afflict about 20 percent of women, we were able to locate the residual cancer cells that survive after treatment and study them,” he said.

Alvarez and colleagues, including lead author Andrea Walens, found that these residual, treatment-resistant tumor cells aren’t like the original cancer cells, which grow and proliferate rapidly.

Instead, they lay low and begin an intricate interaction with surrounding cells, especially those of the immune system. Over time, they switch on a horde of small signaling proteins called cytokines that are vital communicators with immune cells.

Responding to the cytokines, immune cells come rushing to the tumor sites. Among the most abundant of these responding immune cells are macrophages, a type of white blood cells that digest cellular debris and deposit a form of collagen, which has been shown to be important for dormant cells to wake up and grow again.

In mapping this route to recurrence, Alvarez, Walens and their colleagues noted that the macrophages might be targetable by current drugs. They showed that one particular type of cytokine – CCL5 — is able to accelerate tumor recurrence, and blocking it might delay or halt the process.

“There are drugs already approved or under development that inhibit macrophages in general or specifically CCL5 function,” Walens said. “Our next step is to test these macrophage inhibitors to see whether they can delay or prevent recurrence in mice and if can kill the residual, dormant tumor cells.

“We are doing those experiments now in mice and if those work, we could begin trying to move to a clinical trial that would test these drugs in conjunction with anti-HER2 therapies,” Walens said.

###

In addition to Walens, study authors include Ashley V. DiMarco, Ryan Lupo, Benjamin R. Kroger and Jeffrey S. Damrauer.

The authors report no conflicts.

Media Contact
Sarah Avery
[email protected]

Tags: Breast CancercancerCell BiologyImmunology/Allergies/AsthmaMedicine/Health
Share15Tweet7Share2ShareShareShare1

Related Posts

Dihydromyricetin Shields Against Spinal Cord Injury Damage

Dihydromyricetin Shields Against Spinal Cord Injury Damage

August 26, 2025
Key Genes Identified in Nutrient Stress During Virus Infection

Key Genes Identified in Nutrient Stress During Virus Infection

August 26, 2025

NYU Abu Dhabi Researchers Identify Unique Survival Strategies Adopted by Fish in the World’s Warmest Waters

August 26, 2025

Catfish Expert Releases Updated Volume on Catfish Biology and Evolution

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Disc Degeneration on Lumbar Spine Mechanics

Expanding Pancreas Transplants: Benefits and Boundaries

Enhancing Biomechanics Learning with Prediction Problem-Based Method

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.