• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Study helps to better understand the link between indoor and outdoor air quality

Bioengineer by Bioengineer
May 7, 2021
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Junyao Li

People spend about 80-90% of their time indoors. Compared to outdoor air quality, the indoor air quality is more relevant to people’s health. Therefore, understanding the levels, sources and evolution of particulate matter (PM) indoors is important for the accurate evaluation of people’s health risks to aerosol exposure.

A research team led by Prof. Yele Sun from the Institute of Atmospheric Physics (IAP) of the Chinese Academy of Sciences deployed a time-of-flight aerosol chemical speciation monitor (ToF-ACSM) to measure time series and mass spectra of non-refractory species in a typical academic office in IAP. The study was published in Indoor Air.

The researchers measured the concentration and chemical composition of indoor PM2.5 for one month along with simultaneous measurements outdoors. They also performed the open-close window and the dampness experiments in order to figure out the mechanism of indoor/outdoor air exchange, and the influence of increased humidity on the indoor PM2.5.

They found that the indoor aerosol species were primarily from outdoor air exchange. “The indoor and outdoor variation trends are similar for most of aerosol species,” said Prof. Sun, “However, the chemical compositions of PM2.5 are different. The concentration of organic aerosol from fossil fuel combustion and ammonium nitrate decreases because they evaporate or turn from particle to gas upon indoor transport when the indoor temperature is much higher than the outside in winter.”

It is often believed that opening windows to ventilate can improve the indoor air quality. However, according to this newly published study, the PM mass concentration outdoors is significantly higher than that in the office. Elevated natural ventilation will increase PM exposure indoors instead, and this increased exposure might be prolonged when outdoor PM got cleared up. “So it’s not a good idea to open windows when the air quality is not good outdoors.” Said Prof. Sun.

The team also investigated the effect of air humidifiers, which are widely used to increase the indoor humidity. Prof. Sun said, “The increase of indoor relative humidity could lead to a significant increase in PM2.5 mass concentration, especially for organic aerosol. The increase is likely due to the partitioning of hygroscopic organic species from gas phase to particle phase in indoor air.”

“Better understanding of the links between indoor and outdoor air quality will be needed in the future, as well as a more quantitative assessment of human exposure risks indoors,” said Sun.

###

Media Contact
Ms. Zheng Lin
[email protected]

Original Source

http://english.iap.cas.cn/home/News/202105/t20210506_268959.html

Related Journal Article

http://dx.doi.org/10.1111/ina.12838

Tags: Atmospheric ScienceEcology/EnvironmentEnvironmental HealthPollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

Blocking MondoA–TXNIP Boosts Immunity Against Tumors

Blocking MondoA–TXNIP Boosts Immunity Against Tumors

August 22, 2025
Lymph Node Subtypes Reveal Colorectal Cancer Insights

Lymph Node Subtypes Reveal Colorectal Cancer Insights

August 22, 2025

CrAAVe-seq reveals key neuronal genes in vivo

August 22, 2025

Blocking Spermine Metabolism Boosts Pancreatic Cancer Immunity

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

RETICULATA1: Key Plastid Basic Amino Acid Transporter

Tip-Enhanced Nanocavities Boost Sum Frequency Generation

Blocking MondoA–TXNIP Boosts Immunity Against Tumors

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.