• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, June 1, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Study finds the brain searches for the best way to move the body

Bioengineer by Bioengineer
May 10, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research that examines how the body adapts to new movements is shedding new light on how the nervous system learns, and could help to inform a wide range of applications, from customized rehabilitation and athletic training to wearable systems for healthcare. The research is published this week in the journal Current Biology.

Video from the study

Credit: Stanford Biomechatronics Lab

Research that examines how the body adapts to new movements is shedding new light on how the nervous system learns, and could help to inform a wide range of applications, from customized rehabilitation and athletic training to wearable systems for healthcare. The research is published this week in the journal Current Biology.

“How does our brain figure out how to best move our body? It turns out that this can be a challenging problem for the nervous system, considering we have hundreds of muscles that can be coordinated hundreds of times per second—with more possible coordination patterns to choose from than moves on a chessboard,” says study senior author and SFU professor Max Donelan, director of SFU’s Locomotion Lab.

“We often experience changes to our body and our environment. Perhaps you enjoy a long run on a Saturday morning—your muscles may fatigue as the length of the run increases. Perhaps you choose to run on the beach on vacation—the sand may be uneven and loose in comparison to the pavement on the sidewalk. While we might register that these changes have occurred, we might not appreciate how our body adapts to these changes.”

Donelan’s team of neuroscientists that study motor learning collaborated with a Stanford University team of mechanical engineers that design human-robot systems. Together, they tracked the walking characteristics of study participants wearing exoskeletons.

Findings

Researchers found that the nervous system solves the problem of learning a new movement coordination pattern by first exploring and evaluating many different coordination patterns. This exploration was measured as a general increase in variability spanning the levels of the whole movement, joint, and muscle.

With experience, the nervous system adapts specific aspects of movement and simultaneously decreases variability along these aspects. The researchers also found that these adaptive changes improved movement overall, reducing the energy cost of walking by about 25 percent.

“We created new contexts using exoskeletons that act to assist walking, and then studied how people explore new movements and learn more optimal ones,” says Sabrina Abram, the study lead author and former graduate student in the Locomotion Lab. Participants experienced walking in this context over six days, resulting in about 30 hours of lab time for each and an extraordinary amount of data collected by co-author Katherine Poggensee.

While the nervous system appears to benefit from first searching among many different coordination patterns, it also benefits from reducing this search space over time, Abram adds. “This is because continuing to search among coordination patterns that already reduce energy can in turn increase energy, as well as add to the already challenging problem of figuring out the best way to move.”

Applications

Understanding how the brain searches for and figures out how to best move the body is important for a runner navigating new terrain, as well as a patient recovering from spinal injury or stroke.

For example, knowing when the body has adapted to a new training regimen can help coaches identify at which point an athlete should transition to learning new skills. This can also be useful for designing wearable systems—such as exoskeletons and prosthetics—by facilitating learning, and then evaluating people’s optimal responses to a range of designs.

Notes Donelan: “We would all like to move in the best way possible. For healthy people, it seems that, with the right circumstances, the brain can take care of this. For those recovering from an injury, we might learn about how to best rehabilitate this injury from a better understanding of how the nervous system learns to adapt.”



Journal

Current Biology

DOI

10.1016/j.cub.2022.04.015

Method of Research

Data/statistical analysis

Subject of Research

People

Article Title

General variability leads to specific adaptation toward optimal movement policies

Article Publication Date

9-May-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Characterization of morphological and biological aspects of venomous caterpillars of the genus Lonomia Walker (Lepidoptera: Saturniidae) in Colombia

Researchers describe the life cycle of four species of the world’s most venomous caterpillars, genus Lonomia Walker, and discover new parasitoids and host plants

May 31, 2023
Drying codfish

Overfishing linked to rapid evolution of codfish

May 31, 2023

Computational biologist Tal Einav joins LJI faculty

May 31, 2023

Paleontologists discover elephant graveyard in North Florida

May 31, 2023

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    40 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Groundbreaking study uncovers first evidence of long-term directionality in the origination of human mutation, fundamentally challenging Neo-Darwinism

    115 shares
    Share 46 Tweet 29
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

DNA damage repaired by antioxidant enzymes

Petit-spot volcanoes involve the deepest known submarine hydrothermal activity, possibly release CO2 and methane

Producing large, clean 2D materials made easy: just KISS

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In