• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Study finds promising therapeutic target for colitis

Bioengineer by Bioengineer
July 16, 2021
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Neu3 controlled the emergence of disease in a recurrent human food poisoning model of colitis

IMAGE

Credit: Sanford Burnham Prebys

LA JOLLA, CALIF. – July 16, 2021 – An international research group, led by Jamey Marth, Ph.D., a professor at Sanford Burnham Prebys, has shown that the Neuraminidase 3 (Neu3) enzyme is responsible for the onset and progression of colitis–a chronic digestive disease caused by inflammation of the colon. The study, recently published in the Proceedings of the National Academy of Sciences, was performed in a model of recurrent human food poisoning previously linked with the condition. The findings represent a scientific advance toward a targeted therapy to help the millions of people worldwide affected by the disorder.

“Our new research demonstrates how increased activity of Neu3–an enzyme found in the gut–triggers an inflammatory cascade that leads to disease,” says Marth. “Prior to this study, we knew that a neuraminidase enzyme was involved, but didn’t know the source of the enzyme.

“This study pinpoints Neu3 as the protein that triggers onset and progression of colitis,” adds Marth. “In the absence of Neu3, disease onset and progression do not occur, indicating that the enzyme may be a valuable therapeutic target.”

Previously, the Marth laboratory developed a unique model of colitis based on recurrent human food poisoning, which can identify environmental sources of disease. The (mouse) model reflects how humans may contract colitis following repeated, mild infections of Salmonella enterica Typhimurium (ST), a common human food poisoning pathogen.

“We’re now looking at an intrinsic mechanism of protein aging and turnover that’s being modified by a foodborne pathogen,” says Marth. “The pathogen targets the protein aging process in the intestinal tract, thereby diminishing the expression of a key anti-inflammatory enzyme that would normally prevent the onset of colitis and inflammatory bowel diseases (IBDs).

“That enzyme is intestinal alkaline phosphatase (IAP), which detoxifies bacterial toxins, and its augmentation is also the rationale for current clinical trials in the treatment of colitis and sepsis.

“The problem starts when the ST pathogen is ingested and triggers our immune system to ‘amp up’ Neu3 neuraminidase expression,” adds Marth. “Increased activity of Neu3 leads to a reduced life span of IAP, and that impairs the ability to detoxify a damaging endotoxin normally found among bacteria in the gut–and this leads to chronic gut inflammation.”

Inhibiting Neu3 with the antiviral drug Relenza (used to treat influenza) broke that chain, reduced inflammatory cytokine expression and prevented severe colitis. However, current neuraminidase inhibitors such as Relenza and Tamiflu are optimized for viral and bacterial neuraminidases and would need further development to be clinically effective against the human form of Neu3.

“We had to increase the oral dose of Relenza well above that recommended for use in humans,” says Marth. “It worked without apparent side effects; however, a new generation of neuraminidase inhibitors that target the mammalian enzyme is needed. Several research groups are now focusing on developing clinically relevant inhibitors.

“We were rather surprised that the culprit turned out to be Neu3, as many bacteria in the gut are capable of synthesizing their own neuraminidase enzymes,” Marth notes. “Based on the genetic proof in our study, inhibiting Neu3 would be expected to have a positive therapeutic impact. But there’s also another option: augmenting IAP appears to be equally beneficial. Perhaps a dual approach including both oral Neu3 inhibition and oral IAP augmentation simultaneously could be even more effective at reducing inflammation and preventing the onset of colitis.”

###

The study’s DOI is 10.1073/pnas.2100937118

Additional study authors include Won Ho Yang of UC Santa Barbara and Yonsei University (Republic of Korea); Julia Westman, Douglas M. Heithoff and Michael J. Mahan of UC Santa Barbara; Markus Sperandio of Ludwig Maximilian University (Munich, Germany); and Jin Won Cho of Yonsei University.

Acknowledgments

Research reported in this press release was supported by NIH grants HL131474 and DK04824, the Mizutani Foundation for Glycoscience, and the Wille Family Foundation. Additional support was provided by the Yonsei Research Fund (2019-22-0020) and the National Research Foundation of Korea (NRF) Ministry of Science, ICT and Future Planning NRF-2016R1A5A1010764 and NRF-2020R1A2C101232911.

About Sanford Burnham Prebys Medical Research Institute

Sanford Burnham Prebys is a preeminent, independent biomedical research institute dedicated to understanding human biology and disease and advancing scientific discoveries to profoundly impact human health. For more than 40 years, our research has produced breakthroughs in cancer, neuroscience, immunology and children’s diseases, and is anchored by our NCI-designated Cancer Center and advanced drug discovery capabilities. For more information, visit us at SBPdiscovery.org or on Facebook at facebook.com/SBPdiscovery and on Twitter @SBPdiscovery.

Media Contact
Susan Gammon
[email protected]

Related Journal Article

http://dx.doi.org/10.1073/pnas.2100937118

Tags: BiologyBiotechnologyCell Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Influence of Diet and Rumen Source on Fermentation

Influence of Diet and Rumen Source on Fermentation

August 24, 2025
Early Dinosaur Skull Lesions Suggest Aggressive Behavior

Early Dinosaur Skull Lesions Suggest Aggressive Behavior

August 24, 2025

Ganoderma Lucidum Polysaccharides Boost Memory, Gut Health

August 24, 2025

Essential Oils: A Shield Against Fungi in Heritage

August 24, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    115 shares
    Share 46 Tweet 29
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Influence of Diet and Rumen Source on Fermentation

Early Dinosaur Skull Lesions Suggest Aggressive Behavior

Ganoderma Lucidum Polysaccharides Boost Memory, Gut Health

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.