• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Study catalogues cancer ‘fingerprints’ in decade-long global effort to map cancer genomes

Bioengineer by Bioengineer
February 6, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Global research collaboration publishes detailed catalogue of DNA fingerprints of cancer-causing mutations

IMAGE

Credit: Steven G. Rozen, PhD


Singapore, 6 February 2020 – Cancer is the leading cause of death in Singapore and the second leading cause of death around the world, implicated in about one in six deaths globally. An international consortium of scientists has now identified 81 mutational ‘signatures’ that could help reveal the origins and development of various types of cancer, and inform new strategies to prevent, diagnose and treat the disease.

Published in the journal Nature, the study by researchers from Duke-NUS Medical School in Singapore, the Wellcome Sanger Institute in the UK, the University of California San Diego School of Medicine in the USA, and their collaborators around the world is part of a decade-long Pan-Cancer Project aimed at comprehensively analysing whole cancer genomes.

“Different kinds of DNA copying problems and mutation-causing agents, like tobacco, UV light, and chemotherapeutic drugs, lead to mutations with recognisable fingerprints, which we call mutational signatures,” explained Professor Steven Rozen, a senior author of the study from the Cancer and Stem Cell Biology Programme at Duke-NUS Medical School in Singapore.

These signatures can provide a snapshot of a cell’s life history and insight into factors that have mutated the cell’s genetic material. Understanding the role these mutations play in cancer development can help advance research into prevention, diagnosis and treatment.

The research was part of the Pan-Cancer Project, a massive international effort to establish the most comprehensive map of primary cancer genomes to date, involving more than 1,300 scientists and clinicians from 37 countries. For this particular study, the researchers used machine learning to computationally mine mutation data from almost 24,000 human cancer samples. The large data set allowed them to identify 81 different mutational signatures.

Some of the signatures represented fingerprints of known mutation-causing agents. For example, signature SBS4 involves a specific combination of ‘single base substitutions’, in which mutations cause the replacement of a nucleic acid base, the building block of DNA, with another. Lung cancer samples have a strong SBS4 signature, indicating that this particular one is associated with tobacco smoking.

“This study presents a fundamental resource that will tie in with experimental studies to open new doors for understanding the causes of cancer,” said Prof Rozen, who is also Director of Duke-NUS’ Centre for Computational Biology. “This will illuminate new opportunities for cancer prevention, or help screen exposed individuals more intensively. The results will also help us understand in more detail how exposure to mutation-causing agents leads to cancer.”

Prof Mike Stratton, a senior author of the study and Director of the Wellcome Sanger Institute in the UK, said, “Using our detailed catalogue of the range of mutational signatures in cancer DNA, researchers worldwide will now be able to investigate which chemicals or processes are linked to these signatures. This will increase our understanding of how cancer develops, and discover new causes of cancer, helping to inform public health strategies to prevent cancer.”

Prof Patrick Casey, Senior Vice Dean for Research at Duke-NUS, commented, “In Singapore, cancer is the leading cause of death, and it has significant societal and economic impact on patients and their families, as well as the healthcare system. We are truly encouraged by this important achievement by Prof Rozen and his collaborators, and look forward to the advances in cancer treatment and patient care their findings unlock.”

Prof Rozen and his team next plan to study the mutational signature caused by aristolochic acid, a naturally occurring chemical found in the plant family known as birthworts, which are used in herbal medicine in Asia and worldwide. This mutational signature is found in urinary tract and liver cancers throughout East Asia. Further studies on this mutational signature could lead to tests that could help determine who has been exposed to aristolochic acid and help clarify if cancers caused by it require a unique treatment approach.

Prof Rozen shared that scientists will also need to study a more geographically diverse data set of cancer genomes, as the current data set was mainly from Europe and North America. “We simply have no idea if there are substantial exposures to unknown mutation-causing agents in other parts of the world,” he stated.

The research findings were published as part of a special edition of Nature and affiliated publications featuring 23 papers from the Pan-Cancer Project, which is coordinated by the International Cancer Genome Consortium and The Cancer Genome Atlas.

###

Media Contact
Federico Graciano
[email protected]
656-601-3272

Original Source

https://www.duke-nus.edu.sg/allnews/media-releases/cancer-fingerprints

Related Journal Article

http://dx.doi.org/10.1038/s41586-020-1943-3

Tags: cancerCell BiologyGeneticsMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Blood Transfusions Increase Bronchopulmonary Dysplasia Risk in Preemies

September 10, 2025

New ECU Study Reveals Muscle Loss in Children During Early Cancer Treatment: A Hidden Threat to Recovery

September 10, 2025

Biochar and Starch Combo Boosts Lettuce Resilience Against Antibiotic Pollution

September 10, 2025

RSV Can Severely Impact Even Healthy Children, New Research Shows

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    52 shares
    Share 21 Tweet 13
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Targeted Intraoperative Radiotherapy Advances in Early Breast Cancer

Blood Transfusions Increase Bronchopulmonary Dysplasia Risk in Preemies

Modular Organocatalysis Creates BN Isosteres via Wolff Rearrangement

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.