• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Strategies to generate larger pores in metal-organic frameworks

Bioengineer by Bioengineer
December 30, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press


Due to the advantages such as large specific surface area, adjustable pore size and tunable functionality, metal-organic frameworks (MOFs) have shown great application potentials in the fields of gas adsorption and separation, catalysis, sensing and biomedicine. However, most metal-organic frameworks have pore sizes below 2 nm and are typical microporous structures, which limits pore structure and hinders mass transfer within the framework. In order to overcome this limitation, researchers introduced mesopores or macropores in microporous MOFs to generate multi-level pore structure through various strategies. These approaches have recently been reviewed by researchers at the Department of Chemistry, Texas A&M University, published in the National Science Review. Co-authors Liang Feng, Kun-Yu Wang, Xiu-Liang Lv, Tian-Hao Yan, Hong-Cai Zhou introduce recent methodology advances of hierarchically porous MOF synthesis. They also introduced the fabrication methods of HP-MOFs with intrinsic hierarchical pores, while approaches including modulated, templated and template-free synthetic strategies for HP-MOFs are further discussed in the review.

Nowadays, more and more multi-level pore MOFs have been reported by introducing template, etching, and construction of composites. For example, the team of Professor Zhou introduced linker lablization to selectively remove chemically labile organic linkers inside micropores. The trick is to selectively remove a certain number of linkers and clusters in the frameworks, and combine smaller pores into larger ones, while the overall framework intactness should be maintained, says Liang Feng, a graduate student at the Zhou group. He and his colleagues explored a series of bottom-up and top-down methods to create hierarchical pores in MOFs, especially robust MOF platforms for catalysis. The use of ligand instability to selectively remove a ligand from the framework can create larger pores, which also facilitate the guest diffusion during catalysis. This review also comments on the key factors that affect the generation of HP-MOF architectures and their applications in heterogeneous catalysis and guest encapsulation.

“The demands for hierarchical porosity in MOFs push the research of HP-MOFs for various applications including catalysis and storage.” Prof. Hong-Cai Zhou said, “We envision that this review shall function as a roadmap that can guide the future design and development of HP-MOF materials with unusual precision and complexity in multiple scales. “

###

This work received funding from the Center for Gas Separations, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (DE-SC0001015), and Robert A. Welch Foundation through a Welch Endowed Chair to H.-C.Z. (A-0030).

See the article:

Liang Feng, Kun-Yu Wang, Xiu-Liang Lv, Tian-Hao Yan, Hong-Cai Zhou Hierarchically Porous Metal-Organic Frameworks: Synthetic Strategies and Applications

National Science Review, doi: 10.1093/nsr/nwz170

https://doi.org/10.1093/nsr/nwz170

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country’s rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Media Contact
Hong-Cai Zhou
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwz170

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

Early Tuberculosis Treatment Lowers Sepsis Mortality in People with HIV

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.