• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Strategic formulation of common cement could have a big impact on water purification

Bioengineer by Bioengineer
May 4, 2021
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Powerful combinatorial analysis amplifies limited experimental data to find the right cement ingredients for water purification

IMAGE

Credit: U.S. Geological Survey
Department of the Interior/USGS

HOUSTON – Researchers have found the right formula for mixing a cement that does double duty as a structural material and a passive photocatalytic water purifier with a built-in means of replenishment: simply sand down the material’s surface to refresh the photocatalytic quality.

They found this recipe using a few very precise physical laboratory experiments whose data were then greatly amplified using a computational method called combinatorics that tested thousands of combinations of cement composites and their photocatalytic qualities.

The results, say the researchers from C-Crete Technologies and Rice University, indicate that the ingredients themselves are more important than the molecular structure of the cement or the particle size of the photocatalyst used. This research offers not only an important finding for cement — as the need to make concrete and its primary ingredient, cement, more eco-friendly is a goal of much ongoing research — but the methodology holds promise for developing other environmentally friendly, multifunctional materials.

The findings could be applied in cement used in “roadways, Bayous, canals, parking lots, anywhere that water washing over concrete’s surface is exposed to sun,” says Rouzbeh Shahsavari, president of C-Crete Technologies, lead author of the paper that appeared online April 27 in the journal Langmuir. “Since experiments are typically costly, difficult and time consuming, the exciting part of this work is that we can now analyze limited experimental results with our novel combinatorial approach and still obtain meaningful insights and correlations that would have been conventionally obtained by hundreds or thousands of experiments.”

“Broadly, this method can be applied to not just cements or water purification applications but other areas in materials discovery that face limited and sparse experimental data. We have developed a platform technology that helps development teams to decrease the costs of their R&D and come up with completely novel materials with unprecedented and multifunctional properties.” says Shahsavari.

The researchers used five types of readily available cement, nine types of the photocatalyst titanium dioxide and two common pollutants — methyl orange, a cancer-causing substance, and dioxane, a possible carcinogenic compound — both of which are commonly found in drinking water. Of the five cements, White Portland Cement, two types of volcanic ash-based Portland Cements, and a commercially available photo-active cement all proved to have the replenishable photocatalytic quality. The most common cement, ordinary Portland Cement, did not.

“Basically, tweaking cement composition including its belite and ferrite will go a long way for photocatalysis while the mechanical properties remain essentially unchanged. ” says Shahsavari.

###

The National Science Foundation Engineering Research Center on Nanotechnology Enabled Water Treatment (NSF ERC) and C-Crete Technologies funded this research. Shahsavari’s coauthors are Pedro J. J. Alvarez, Pamela Zuniga Fallas, Jaime Quesada Kimzey, Md Tariqul Islam and Juan Noveron, all of the Rice University NSF ERC, Jaime Quesada Kimzey of the Costa Rica Institute of Technology, and Prabhas Hundi of Rice University Department of Civil and Environmental Engineering.

C-Crete Technologies works at the intersection of materials science, nanotechnology, multiscale computations, predictive analytics, software, hardware and manufacturing to drive next generation of innovations for a low carbon and energy efficient world. http://www.ccretetech.com

Media Contact
Rouzbeh Shahsavari
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/acs.langmuir.1c00654

Tags: Biomedical/Environmental/Chemical EngineeringCivil EngineeringIndustrial Engineering/ChemistryNanotechnology/MicromachinesPollution/RemediationResearch/DevelopmentTechnology TransferTechnology/Engineering/Computer ScienceUrbanization
Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Language Switching in Multilingual Autistic Adults

October 19, 2025

Effective Nursing Strategies for Cardiovascular Disease Prevention

October 19, 2025

Serum Proteomics: Uncovering COVID-19 Organ Morbidity Biomarkers

October 19, 2025

ARNT2 Activates STRA6, Fueling Liposarcoma Progression

October 19, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1261 shares
    Share 504 Tweet 315
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    289 shares
    Share 116 Tweet 72
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    122 shares
    Share 49 Tweet 31
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Language Switching in Multilingual Autistic Adults

Effective Nursing Strategies for Cardiovascular Disease Prevention

Serum Proteomics: Uncovering COVID-19 Organ Morbidity Biomarkers

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.