• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Strain engineering of 2D semiconductor and graphene

Bioengineer by Bioengineer
November 23, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Zhiwei Peng, Xiaolin Chen, Yulong Fan, David J. Srolovitz, Dangyuan Lei

Strain engineering usually refers to a kind of material processing technology, which aims to regulate the properties of materials or optimize related devices’ performance by inherent or external strain. In recent years, with the development of 2D materials, the research of strain engineering of 2D materials (transition metal dichalcogenides (TMDCs), graphene, etc.) has attracted significant attention. Compared with strain engineering of traditional bulk materials, the atomic thickness of 2D materials makes them more suitable to serve as the platform for strain-engineering research and builds a bridge between strain engineering and nanophotonics. Hence, they are worthy of attention in many points of view, from fundamental physics to practical applications.

In a new paper published in Light: Science & Applications, a team of scientists, led by Doctor Dangyuan Lei from Department of Materials Science and Engineering, City University of Hong Kong, China, and co-workers have written a review article to comprehensively summarized recent developments in this burgeoning field. In this review paper, the traditional macroscopic strain field theory is introduced firstly. Then, the band structure changes of strained 2D semiconductors (TMDCs) and strained graphene are discussed, while the optical responses observed under different kinds of strain fields are reviewed. Subsequently, this paper summarizes the strain engineering techniques that can apply different kinds of strains to specific 2D materials. At the end of this article, the diverse applications in optical devices, optoelectronics and other photonics applications are presented, and the existing problems in this field and their future development are prospected, respectively.

Traditional strain engineering mainly focuses on silicon, germanium and other 3D bulk materials, which usually lack high fracture strength due to their intrinsic 3D properties. Therefore, the rising 2D materials with atomic thickness (such as graphene, TMDCs) have entered the field of vision. Their strain engineering has been widely studied in both the scientific community and industrial society. Compared with the traditional 3D materials, the 2D characteristics of 2D materials endow them with some quite different and novel characteristics, making their strain engineering more attractive. These scientists summarize those unique properties of 2D materials:

“Based on the following three points, we think 2D materials as a perfect platform for strain engineering: (1) 2D materials have better mechanical properties (deformation capacity), which means they can sustain larger strain before fracture when compared to bulk materials; (2) 2D materials have better optical properties due to their strong exciton effects, which benefits their further applications in photonics devices; and (3) 2D materials have more variable deformation patterns. Their atomic thickness properties allow them to achieve out-of-plane strain, which is almost impossible in 3D bulk materials, allowing 2D materials to possess more deformation patterns, such as uniaxial and biaxial in-plane strain, wrinkle, fold, and localized non-uniform strain.”

“Since the types of the applied strain are varied, the changes of electrical and optical properties are different. In general, we can observe the redshifted (blueshifted) PL spectra from the tensile (compressive) strained 2D TMDCs. Similarly, we can observe the shift and splitting of the Raman spectra from strained graphene. Besides, many novel optical responses, such as ‘funnel’ effect, single-photon emission and tunable second-harmonic generation, emerge under some special strain distribution.” they added.

“There are various technologies to apply strains to 2D materials. Based on the type of the induced strain, we usually classified them into three categories, namely, the uniaxial strain technologies, biaxial strain technologies and local strain technologies. We should pay more attention to local strain technologies. They actually give a new way to control photons in an ultrasmall area. In conclusion, the flexibility and optical properties of 2D materials (compared to their bulky counterparts) open the door for the development of potentially important new strain-engineered photonic applications.” the scientists forecast.

###

Media Contact
Dangyuan Lei
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-00421-5

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Selective Arylating Uncommon C–F Bonds in Polyfluoroarenes

October 4, 2025
Building Larger Hydrocarbons for Optical Cycling

Building Larger Hydrocarbons for Optical Cycling

October 4, 2025

Scientists Discover How Enzymes “Dance” During Their Work—and Why It Matters

October 4, 2025

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

LINC01547 Enhances Pancreatic Cancer and Chemoresistance

Psychological Resilience Mediates Care in Nursing Interns

MeaB bZIP Factor Essential for Nitrosative Stress Response

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.