• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Story tips: Stealthy air leak detection, carbon to chemicals and recycling goes large

Bioengineer by Bioengineer
May 3, 2021
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ORNL, U.S. Dept. of Energy

Buildings – The mirage effect

A team of researchers at Oak Ridge National Laboratory has developed a method to detect and measure air leaking from a building’s walls and roof that is quicker, cheaper and less disruptive to occupants.

Current air leak detection options, such as using a blower door and smoke or infrared thermography, are costly and invasive. ORNL’s method is conducted from outside, using an imaging technique to visualize the flow of air leaks and calculate the volumetric flow of air based on the refraction effects imaged by cameras.

“Similar to a mirage over a black top road in the middle of summer, which looks fuzzy because air above the road is hotter than surrounding air, a building’s wall becomes blurry when indoor air meets outdoor air,” ORNL’s Philip Boudreaux said. “Refraction imaging allows us to see this.”

Correcting excess air leakage can decrease energy consumption in buildings and reduce potential for mold growth.

Media contact: Jennifer Burke, 865.414.6835, [email protected]

Image: https://www.ornl.gov/sites/default/files/2021-05/buildings_giphy-4.gif

Caption: ORNL’s non-disruptive air leak detector captures air escaping from exterior walls and uses refractive imaging to calculate the leakage flow rate. Credit: ORNL, U.S. Dept. of Energy

Microbes – Carbon to chemicals

A research team led by Oak Ridge National Laboratory bioengineered a microbe to efficiently turn waste into itaconic acid, an industrial chemical used in plastics and paints.

Producing itaconic acid currently involves fungi feeding on relatively pure sugars, which can be expensive. In ORNL’s demonstration, the team used lignin, a waste product from biorefineries and paper mills, to grow the bacterium Pseudomonas putida for potentially cheaper itaconic production.

The trick was to separate the microbes’ growth phase from itaconic production using dynamic controls. ORNL designed and deployed a biosensor that triggers the metabolic pathway for itaconic acid production only after the microbes consume all the nitrogen that fuels their growth.

“This technology could provide additional revenue for biorefineries by turning lignin into a high-value chemical,” ORNL’s Adam Guss said. “One strain achieved nearly 90% of theoretical yield during the production phase and could be further optimized. We can also apply these methods to a range of carbon waste streams.”

Media contact: Kim Askey, 865.576.2841, [email protected]

Image: https://www.ornl.gov/sites/default/files/2021-05/Putida_forAdam_2clr.jpg

Caption: Scientists genetically engineered bacteria for itaconic acid production, creating dynamic controls that separate microbial growth and production phases for increased efficiency and acid yield. Credit: NREL

Manufacturing – Recycling goes large

Oak Ridge National Laboratory researchers, in collaboration with Cincinnati Inc., demonstrated the potential for using multimaterials and recycled composites in large-scale applications by 3D printing a mold that replicated a single facet of a precast concrete tool.

The team added a dual feed system to the Big Area Additive Manufacturing machine that enabled printing with multiple materials in a single build using one extruder. Within seven hours, the large 3D printer produced a 400-pound mold measuring 10 feet in length made of recycled carbon fiber reinforced thermoplastic and syntactic foam.

Large-scale printing with multimaterials and recycled composites is anticipated to lower the cost of tooling and open opportunities for printing structures with lightweight cores and tailored properties.

“New mechanical responses can be achieved with multimaterial printing such as soft and rigid segments within a part and impact resistant structures,” said ORNL’s Vidya Kishore.

Media contact: Jennifer Burke, 865.414.6835, [email protected]

Image: https://www.ornl.gov/sites/default/files/2021-05/baam_recycling_gif.gif

Caption: ORNL, in collaboration with Cincinnati Inc., used the Big Area Additive Manufacturing machine to 3D print a mold made of recycled thermoplastic composite and syntactic foam, demonstrating the potential for multimaterials in large-scale applications. Credit: ORNL, U.S. Dept. of Energy

###

Media Contact
Sara Shoemaker
[email protected]

Original Source

https://www.ornl.gov/news/story-tips

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-22556-8

Tags: Biomedical/Environmental/Chemical EngineeringIndustrial Engineering/ChemistryResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Seismic Analysis of Masonry Facades via Imaging

Pediatric Pharmacogenomics: Preferences Revealed by Choice Study

Genkwanin Glycosides Boost Glucose Uptake in Fat

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.