• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, January 10, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Story tips from the Department of Energy’s Oak Ridge National Laboratory, June 3, 2019

Bioengineer by Bioengineer
June 3, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

Nuclear–Tiny test fuels

For the first time, Oak Ridge National Laboratory has completed testing of nuclear fuels using MiniFuel, an irradiation vehicle that allows for rapid experimentation. The compact experiment, which was irradiated at ORNL’s High Flux Isotope Reactor and then examined to see how the fuel responded, comprises a miniature target that holds pinhead-size fuel kernels. Conventional fuel tests use pellets with volumes more than 1,000 times that size. MiniFuel’s small size helps researchers better control variables and accelerate burnup conditions during irradiation. “Fuel performance testing is extremely complex, and it is difficult to interpret the data because so much is happening across the fuel pellet,” said ORNL’s Chris Petrie, who developed the concept. “With MiniFuel, we can isolate conditions, test specific fuel phenomena and acquire performance data much faster.” The first tests are focused on uranium nitride fuel for light water reactors–a fuel type lacking performance data. [Contact: Jason Ellis, (865) 241-5819; [email protected]]

Image: https://www.ornl.gov/sites/default/files/2019-05/MiniFuel_2019-P03618.jpg

Caption: The ORNL-designed MiniFuel significantly decreases the size of fuel specimens and capsules that are irradiated in ORNL’s High Flux Isotope Reactor. The smaller experiments allow researchers to better control various conditions during irradiation and improve interpretation of data during post-irradiation examination. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

Computing–Routing out the bugs

A study led by Oak Ridge National Laboratory explored the interface between the Department of Veterans Affairs’ healthcare data system and the data itself to detect the likelihood of errors and designed an auto-surveillance tool to help improve overall quality and safety. The team’s computing method can scan data for more than one million patients and push system error alerts for the VA to review and address. “Similar surveillance tools can detect human errors, but our major focus is routing out machine-generated errors that could lead to unintended consequences in health IT,” said ORNL’s Olufemi (Femi) Omitaomu, co-author of the published study. Feedback from the VA’s review informs improvements to the surveillance tool. The next phase will involve machine learning techniques for smarter, faster error detection. Over time, the VA’s platform will run more smoothly, accurately and efficiently in real-time, enabling a quicker response to potentially unsafe conditions in or functionality of health IT. [Contact: Sara Shoemaker, (865) 576-9219; [email protected]]

Image: https://www.ornl.gov/sites/default/files/2019-05/CADES2019-P00182.jpg

Caption: An ORNL-developed computing method can scan data for more than one million patients and push system error alerts for the Department of Veterans Affairs to review and address. Part of ORNL’s computing team includes, from left, Ozgur Ozmen, Mohammed M. Olama, Mark Martin, Hilda B. Klasky and Olufemi A. Omitaomu. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

Materials–Engineering heat transport

Scientists have discovered a way to alter heat transport in thermoelectric materials, a finding that may ultimately improve energy efficiency as the materials convert heat flow into electricity. Caltech theorists simulating the thermoelectric material lead selenide saw something surprising–a thermal wave that did not propagate. They determined the trick to potentially increasing energy efficiency in this material was to stop heat-carrying vibrational waves without thwarting electricity-bearing electrons. To verify the discovery, they called on experimentalists to probe a real crystal. “Vibrational waves stop propagating in a perfect crystal because of nonlinear interactions between phonons,” said Michael Manley of Oak Ridge National Laboratory. The experiment used neutron scattering at ORNL’s Spallation Neutron Source and the National Institute of Standards and Technology’s Center for Neutron Research and X-ray scattering at Argonne National Laboratory’s Advanced Photon Source. The discovery improves understanding of thermoelectric performance and may enable unconventional heat transport in future materials. [Contact: Dawn Levy, (865) 576-6448; [email protected]]

Image: https://www.ornl.gov/sites/default/files/2019-05/Materials-Engineering_heat_transport_0.png

Caption: In a perfect thermoelectric crystal, vibrational waves decompose and localize. A diagram of simulated phonon energy versus momentum reveals exactly where heat transport stops because of vibrations interfering nonlinearly–the flat band between the curved top and V-shaped bottom bands. Credit: Michael Manley/Oak Ridge National Laboratory, U.S. Dept. of Energy

###

Media Contact
Sara Shoemaker
[email protected]

Original Source

https://www.ornl.gov/news/story-tips

Related Journal Article

http://dx.doi.org/10.1080/20476965.2019.1599701

Tags: Chemistry/Physics/Materials SciencesComputer ScienceElectrical Engineering/ElectronicsEnergy/Fuel (non-petroleum)MaterialsMultimedia/Networking/Interface DesignParticle PhysicsSystem Security/Hackers
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026
Biocompatible Ligand Enables Safe In-Cell Protein Arylation

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026

Monovalent Pseudo-Natural Products Boost IDO1 Degradation

January 7, 2026

Catalytic Enantioselective [1,2]-Wittig Rearrangement Breakthrough

January 7, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    145 shares
    Share 58 Tweet 36
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    46 shares
    Share 18 Tweet 12
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    45 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Wellness Trends: High Costs, Low Benefits

mRNA Breakthroughs in HIV-1 Prevention and Treatment

PLCG2’s Role in Disease: Genetics, Signaling, Impacts

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.